Advanced Studies in Pure Mathematics 15, 1989 Automorphic Forms and Geometry of Arithmetic Varieties pp. 287-300

A Formula for the Dimension of Spaces of Cusp Forms of Weight 1

Toyokazu Hiramatsu

Dedicated to Prof. Ichiro Satake on his sixtieth birthday

Introduction

Let Γ be a fuchsian group of the first kind and denote by d_1 the space of cusp forms of weight 1 on the group Γ . It would be interesting to have a certain formula for d_1 . But it is not effective to compute the dimension d_1 by means of the Riemann-Roch theorem. The purpose of this paper is to give some formula of d_1 by making use of the Selberg trace formula ([4], [6], [7]).

§ 1. The Selberg eigenspace

Let S denote the complex upper half-plane and we put G = SL(2, R). Consider direct products

$$\tilde{S} = S \times T, \ \tilde{G} = G \times T,$$

where T denotes the real torus. The operation of an element (g, α) of \tilde{G} on \tilde{S} is represented as follows:

$$\widetilde{S} \ni (z, \phi) \longrightarrow (g, \alpha)(z, \phi) = \left(\frac{az+b}{cz+d}, \phi + \arg(cz+d) - \alpha\right) \in \widetilde{S},$$

where $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$. The space \tilde{S} is a weakly symmetric Riemannian space with the \tilde{G} -invariant metric

$$ds^{2} = \frac{dx^{2} + dy^{2}}{y^{2}} + \left(d\phi - \frac{dx}{2y}\right)^{2},$$

and with the isometry μ defined by $\mu(z, \phi) = (-\overline{z}, -\phi)$. The \tilde{G} -invariant measure $d(z, \phi)$ associated to the \tilde{G} -invariant metric is given by

Received November 15, 1986.