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Introduction

Let I" be a fuchsian group of the first kind and denote by d, the
space of cusp forms of weight 1 on the group I'. It would be interesting
to have a certain formula for d,. But it is not effective to compute the
dimension d, by means of the Riemann-Roch theorem. The purpose of
this paper is to give some formula of d, by making use of the Selberg
trace formula (4], [6], [7]).

§ 1. The Selberg eigenspace

Let S denote the complex upper half-plane and we put G=SL(2, R).
Consider direct products

S=SxXT, G=GXT,

where T denotes the real torus. The operation of an element (g, &) of G
on S is represented as follows:
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where g:(‘cZ Z) € G. The space S is a weakly symmetric Riemannian

space with the G-invariant metric
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and with the isometry y defined by u(z, ¢)=(—2z, —¢). The G-invariant
measure d(z, ¢) associated to the G-invariant metric is given by
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