Advanced Studies in Pure Mathematics 15, 1989 Automorphic Forms and Geometry of Arithmetic Varieties pp. 1–27

Zeta Functions Associated to Cones and their Special Values

I. Satake and S. Ogata

Introduction

The purpose of this paper is to give a survey on zeta functions associated to (self-dual homogeneous) cones and their special values, including some recent results of ours on this subject.

In §1 we summarize basic facts on self-dual homogeneous cones and the associated Γ -functions. §2 is concerned with the zeta functions. Let V be a real vector space, \mathscr{C} a self-dual homogeneous cone in V, and let G be the automorphism group $\operatorname{Aut}(V, \mathscr{C})^{\circ}$. We fix a *Q*-simple *Q*-structure on (V, \mathscr{C}) . As is well-known, the pair (G, V) is a "prehomogeneous vector space" in the sense of Sato-Shintani [SS]. Following the general idea in [SS], we define a set of zeta functions $\{\xi_i\}$, each one of which is associated to a connected component V_I of $V^{\times} = V - S$, S denoting the singular set; in particular, $\xi_{(0)} = Z_{\mathscr{K}}$ is the zeta function associated to the cone $V_{(0)} = \mathscr{C}$. Then we give an explicit expression for the system of functional equations (Theorems 2.2.2, 2.3.3). Under the assumption that d is even, taking suitable linear combinations of these zeta functions, we define a new kind of L-functions L_I , which are shown to satisfy individually (or two in a pair, according to the cases) a functional equation of ordinary type (see (2.3.5)). We give some (new) results (Theorems 2.3.9, 2.4.1) on the residues and special values of these zeta and L-functions, where two extreme Lfunctions $L_{(0)}$ and $L_{(r_1)}$ play an essential role. These extreme L-functions, which generalize the (partial) Dedekind zeta function and the Shimizu Lfunction in the Hilbert modular case, seem to be of particular importance from the number-theoretic view point.

In §3, we consider the corresponding (rational) symmetric tube domain $\mathcal{D} = V + \sqrt{-1}\mathscr{C}$ and, under an additional assumption that the *Q*-rank of G is one, study the geometric invariants $(\chi_{\infty}, \tau_{\infty}, \text{etc.})$ associated to the cusp singularities appearing in the (standard) compactification of the arithmetic quotient space $\tilde{\Gamma} \setminus \mathscr{D}$ ([S3, 4]). A typical example is the Hilbert

Received February 16, 1987.

^{*&#}x27; Partially supported by NSF Grand DMS-8502341.