Advanced Studies in Pure Mathematics 14, 1988 Representations of Lie Groups, Kyoto, Hiroshima, 1986 pp. 651-660

Boundedness of Certain Unitarizable Harish-Chandra Modules

Mogens Flensted-Jensen, Toshio Oshima and Henrik Schlichtkrull

§ 0. Introduction

Let G be a connected real semisimple Lie group, Z be the center of G, K be a maximal compact subgroup of G modulo Z, U(g) be the universal enveloping algebra of the complexification g_c of the Lie algebra g of G and Z(g) be the center of U(g). An element X of g defines vector fields $\pi(X)$ and $D_B(X)$ on G by

$$(\pi(X)\phi)(g) = \frac{d}{dt}\phi(e^{-tX}g)|_{t=0}$$

and

$$(D_R(X)\phi)(g) = \frac{d}{dt}\phi(ge^{tX})|_{t=0}$$

for $\phi \in C^{\infty}(G)$. Then π and D_R extend to algebra homomorphisms of U(g) to the algebra of differential operators on G. For an element x of G we also define an endomorphism $\pi(x)$ of $C^{\infty}(G)$ by $(\pi(x)\phi)(g) = \phi(x^{-1}g)$ for $\phi \in C^{\infty}(G)$.

Let f be an element of $C^{\infty}(G)$ or a column vector of elements of $C^{\infty}(G)$. Suppose f is left K-finite and $Z(\mathfrak{g})$ -finite (i.e. dim $\sum_{k \in K} C\pi(k) f < \infty$ and dim $\pi(Z(\mathfrak{g})) f < \infty$). Put $V_f = \pi(U(\mathfrak{g})) f$. Then V_f is a (\mathfrak{g}, K) -module under π . Moreover we say that V_f is a unitarizable Harish-Chandra module if there exists a unitary representation (τ, E) of G with finite length (i.e. (τ, E) is isomorphic to a finite direct sum of irreducible unitary representations) such that V_f is isomorphic to the Harish-Chandra module of (τ, E) . In this paper we consider the following problem:

Suppose V_f is a unitarizable Harish-Chandra module. Then is the function f(g) bounded when g tends to a certain infinite point?

Of course if we do not impose any other assumption on f, we have nothing to conclude. We have in mind that f satisfies some more conditions, such as, f corresponds to a section of the G-homogeneous vector bundle associated to a representation of a certain subgroup of G and/or f

Received November 9, 1987.