Advanced Studies in Pure Mathematics 14, 1988 Representations of Lie Groups, Kyoto, Hiroshima, 1986 pp. 603-650

A Realization of Semisimple Symmetric Spaces and Construction of Boundary Value Maps

Toshio Oshima

Contents

- § 0. Introduction
- § 1. Construction of a compact imbedding
- § 2. Invariant differential operators
- § 3. Boundary value maps
- § 4. Principal series

§ 0. Introduction

A homogeneous space G/H is called a semisimple symmetric space if G is a real connected semisimple Lie group and there exists an involution of G such that H is an open subgroup of the fixed point group of the involution. The most fundamental problem on the harmonic analysis on G/H is to give an explicit decomposition of $L^2(G/H)$ into irreducible representations of G, that is, to get a Plancherel formula for $L^2(G/H)$. Here $L^2(G/H)$ is the space of square integrable functions on G/H with respect to the invariant measure. In [O3] I proposed a method to obtain The method explained there works well for the the Plancherel formula. most continuous spectra on $L^2(G/H)$ with respect to the ring D(G/H) of invariant differential operators on G/H, and the Plancherel measure for the spectra is expressed by "c-function" for G/H which is explicitly calculated by the method in [O3, §8], where G^{d}/H^{d} should be corrected to G^{d}/K^{d} . Comparing to the continuous spectra, the discrete spectra (the discrete series for G/H) are not easy to analyse by the method mentioned in [O3, §9] and it is hard to get the precise parametrization of the discrete series or to investigate its structure especially in the case when the symmetric space is not a K_{e} -type. On the other hand, by using Flensted-Jensen's duality method, we can directly study the discrete series and in fact we get sufficient informations to analyse the discrete series ([F] and [MO] etc.). Applying the usual method of parabolic induction for repre-

Received May 30, 1987.