Advanced Studies in Pure Mathematics 14, 1988 Representations of Lie Groups, Kyoto, Hiroshima, 1986 pp. 337-348

Some Remarks on Discrete Series Characters for Reductive *p*-adic Groups

Paul J. Sally, Jr.*

§0. Introduction

Let F be a p-adic field of characteristic zero (a finite extension of Q_p), and let G be the subgroup of F-rational points of a connected, reductive algebraic group defined over F. A complex representation (π, V) of G is smooth if, for each $v \in V$, there is an open subgroup K_v of G which fixes v. For any open subgroup K of G, define V^K to be the set of K fixed vectors in V. The representation (π, V) is admissible if (1) π is smooth; (2) dim V^K is finite for all compact open subgroups of G.

The basic theorem concerning admissible representations was proved by Bernstein.

Theorem 0.1 (Bernstein [B]). If (π, \mathcal{H}) is an irreducible unitary representation of G, then π is admissible.

This is to be interpreted as follows. Let V^{∞} be the subspace of π smooth vectors in the Hilbert space \mathscr{H} . Then V^{∞} is dense in \mathscr{H} , and we say that (π, \mathscr{H}) is admissible if (π, V^{∞}) is admissible according to the above definition.

If (π, V) is an admissible representation of G, and $f \in C_c^{\infty}(G)$, the space of locally constant, compactly supported, complex-valued functions on G, then

(0.2)
$$\pi(f) = \int_{G} f(x)\pi(x)dx$$

is an operator of finite rank. (Here, dx is a Haar measure on G.) The map

(0.3)
$$f \longrightarrow \hat{f}(\pi) = \operatorname{trace} \pi(f)$$

is called the *distribution character* of π .

Received March 23, 1987.

^{*} Partially supported by the National Science Foundation.