Advanced Studies in Pure Mathematics 14, 1988 Representations of Lie Groups, Kyoto, Hiroshima, 1986 pp. 123-151

Lie Algebra Cohomology and Holomorphic Continuation of Generalized Jacquet Integrals

Nolan R. Wallach¹⁾

Introduction

In this paper there are two types of theorems. The first are generalizations of vanishing theorems of Kostant [K] and Lynch [L]. The second are the holomorphic continuation of certain integrals. The proofs of the two seemingly unrelated types of results have in common the use of certain operators, Q_j which are non-commutative analogues of the standard Euler operator on the space of polynomials in several variables.

We now describe an important class of examples of the results. Let G be a real reductive group of inner type. Let g denote the Lie algebra of G and let Y be a nilpotent element in g. Then ([Ja, p. 99, Lemma 8]) there exist elements X, $H \in g$ such that [X, Y] = H and [H, X] = 2X, [H, Y] = -2Y. Fix a Cartan involution such that $\theta H = -H$. Let u be the Lie subalgebra of g generated by $u_2 = \{x \in g \mid [H, x] = 2x\}$. Let $z \in \mathbb{C} - \{0\}$ and let $\psi(x) = zB(Y, x)$ for $x \in u$. If V is a g-module then we define a new action π_{ψ} of u on V by $\pi_{\psi}(x)v = xv - \psi(x)v$. We denote this u-module by $V \otimes \mathbb{C}_{\psi}$. The main theorem on Lie algebra cohomology implies

Theorem. Let V be a g-module such that if $v \in V$ then $\pi_{\psi}(x)^k v = 0$ for all $x \in \mathfrak{u}$ for some k = k(v). Then $H^i(\mathfrak{u}, V \otimes \mathbb{C}_{\psi}) = (0)$ for i > 0.

We now describe the other type of results. Let \mathfrak{p} be the sum of the eigenspaces for ad H with non-negative eigenvalue. Let $P = \{g \in G \mid Ad(g)\mathfrak{p} \subset \mathfrak{p}\}$ and put $M = P \cap \theta(P)$. Let (σ, H_{σ}) be a finite dimensional irreducible representation of M. Put $\alpha = \{Z \in \mathfrak{m} \mid [Z, \mathfrak{m}] = 0, \ \theta Z = -Z\}$. If $\nu \in \mathfrak{a}^*_{\mathbb{C}}$ then let $(\pi_{P,\sigma,\nu}, I^{\infty}_{P,\sigma})$ be the corresponding (degenerate) principal series representation (see § 6). Let $\tau = \exp(\pi/2(x - Y))$.

The analytic results involve the study of integrals of the form

(*)
$$J_{P,\sigma,\nu}(f) = \int_{\mathfrak{u}} e^{i B(Y,u)} f_{\sigma,\nu}(\tau \exp(u)) du.$$

Received December 26, 1986.

¹⁾ Research partially supported by a grant from the National Science Foundation.