Advanced Studies in Pure Mathematics 14, 1988 Representations of Lie Groups, Kyoto, Hiroshima, 1986 pp. 1-30

Characteristic Varieties of Highest Weight Modules and Primitive Quotients

Toshiyuki Tanisaki

Dedicated to Professor Ichiro Satake on his 60th birthday

§ 0. Introduction

0.1. We discuss about the characteristic varieties of certain modules over the enveloping algebra of a semisimple Lie algebra, such as highest weight modules and primitive quotients.

Let G be a connected semisimple algebraic group over the complex number field C, g its Lie algebra and U(g) the enveloping algebra of g. Let X be the flag variety of G and \mathscr{D}_X the sheaf of linear (algebraic) differential operators on X. The natural action of G on X induces an algebra homomorphism $U(g) \rightarrow \Gamma(X, \mathscr{D}_X)$. Hence for a U(g)-module M we have a \mathscr{D}_X -module $\mathscr{D}_X \otimes_{U(g)} M$.

For a finitely generated $U(\mathfrak{g})$ -module M (resp. a coherent \mathscr{D}_x -module \mathscr{M}) the associated variety V(M) (resp. the characteristic variety $Ch(\mathscr{M})$) is a subvariety of the dual space \mathfrak{g}^* of \mathfrak{g} (resp. a subvariety of the cotangent bundle T^*X). For simplicity we sometimes write Ch(M) instead of $Ch(\mathscr{D}_x \otimes_{U(\mathfrak{g})} M)$ for a finitely generated $U(\mathfrak{g})$ -module M and call it the characteristic variety of M.

We hope to determine the associated varieties and the characteristic varieties of the irreducible highest weight modules L with trivial central character and the quotients $U(\mathfrak{g})/I$, where I is a primitive ideal of $U(\mathfrak{g})$ with trivial central character. For a finitely generated $U(\mathfrak{g})$ -module M with trivial central character V(M) is determined from Ch(M) (Borho-Brylinski, see Proposition 1.2 below). Hence our problems are the following:

Problem 0.1. Determine Ch(L) for irreducible highest weight modules L with trivial central character.

Problem 0.2. Determine Ch(U(g)/I) for primitive ideals I of U(g)

Received December 11, 1986.