Advanced Studies in Pure Mathematics 13, 1988 Investigations in Number Theory pp. 479–492

On Generalized Periods of Cusp Forms

Katsumi Shiratani

Introduction

Manin [1], [2] defined a *p*-adic measure and *p*-adic Hecke series attached to cusp forms with respect to the full modular group.

In the present paper it is our aim to give a few remarks on p-adic measures attached to the Bernoulli functions and the cusp forms, and to give a p-adic expression of generalized periods of the cusp forms. Namely we here discuss the generalized periods of the cusp forms with any Dirichlet characters.

§1. Nasybullin's lemma

We set q=p for any prime p>2 and q=4 for the prime p=2. Let $\overline{f}=[f,q]$ be the least common multiple f and q, and Z the rational integer ring.

The ring $Z_{\bar{j}} = \lim_{n} Z/p^n \bar{f} Z$, $n \ge 0$, the inverse limit with natural homomorphisms, is isomorphic to the direct product of the rational *p*-adic integer ring Z_p and the residue class ring $Z/f_0 Z$ with a natural number f_0 such that $\bar{f} = p^l f_0$, $(f_0, p) = 1$.

Let Z_{j}^{*} be the multiplicative group of Z_{j} , so that it is isomorphic to the direct product of the unit groups Z_{p}^{*} and $(Z/f_{0}Z)^{*}$.

Let K be a field over the rational p-adic number field Q_p . Then we call a function μ a K-measure on $Z_{\vec{f}}^*$, if μ is a finitely additive function defined on open-closed subsets in $Z_{\vec{f}}^*$, whose values are in the field K. Any open-closed subset in $Z_{\vec{f}}^*$ is a disjoint union of some finite intervals $I_{a,n} = a + p^n \overline{f} Z_{\vec{f}}$ in $Z_{\vec{f}}^*$, where $a \in \mathbb{Z}$ prime to \overline{f} , and therefore a K-measure μ is determined by its values on all the intervals in $\mathbb{Z}_{\vec{f}}^*$.

Let $Q^{(f)}$ denote the set of such rational numbers, each denominator of which is a divisor of $\overline{f}p^n$ for some $n \ge 0$.

Then Nasybullin's lemma reads as follows [1].

Lemma 1. Let R be a K-valued function defined on $Q^{(f)}$ with a property: There exist two constants A, $B \in K$ such that

Received December 17, 1986.