Advanced Studies in Pure Mathematics 13, 1988 Investigations in Number Theory pp. 413-431

On the Eighth Power Residue of Totally Positive Quadratic Units

Noburo Ishii

§ 0. Introduction

Let p be a prime number which is congruent to 3 modulo 4 and ε_p the totally positive fundamental unit of the real quadratic field $F = Q(\sqrt{p})$. Let q be a prime number which is split in F and is congruent to 1 modulo 2^n . Then we may define 2^n -th power residue symbol $(\varepsilon_p/q)_{2^n}$ of ε_p modulo q as follows. For a prime factor \mathcal{Q} of q in F, we choose an integer A such that

$$\varepsilon_n \equiv A \mod \mathcal{Q}.$$

The integer A is uniquely determined modulo q. The symbol $(\varepsilon_p/q)_{2^n}$ is defined only when A is a 2^{n-1} -th power residue modulo q and given by

 $(\varepsilon_p/q)_{2^n} = \begin{cases} 1 & \text{if } A \text{ is a } 2^n \text{-th power residue modulo } q, \\ -1 & \text{otherwise.} \end{cases}$

This definition is independent of the choice of the prime ideal \mathcal{Q} and the assumption imposed on q implies the following equivalence:

 $(\varepsilon_p/q)_{2^n} = 1 \iff$ the polynomial $x^{2^n} - A$ factors into a product of distinct 2^n linear polynomials modulo q.

The symbol $(\varepsilon_p/q)_2$ (resp. $(\varepsilon_p/q)_4$) is usually called the quadratic symbol (resp. biquadratic symbol or quartic symbol) of ε_p modulo q. For the given q, it is comparatively easy to determine the sign of the quadratic symbol. Thus we have

$$(\varepsilon_p/q)_2 = 1 \iff q \equiv 1 \mod 8.$$

The evaluation of the quartic residue symbol $(\varepsilon_p/q)_4$ are studied by many authors ([1], [2], [3], [4], [5], [7]). Here we shall quote one of their results. Let *r* be any positive odd multiples of the class number of the imaginary

Received July 14, 1986.