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On a Classical Theta-Function, II 

Tomio Kubota 

The present paper, containing a partial and expository reconstruction 
of the results which were known since [3], is written for the purpose of 
stating some basic facts on a classical theta-function in a form which 
is possibly convenient in investigations related positively to metaplectic 
groups. 

Since this paper is a continuation of [2], the ordinals of all sections, 
theorems, propositions and formulas follow those of [2], while references 
and footnotes are numbered anew, and the only theorem in [2] is quoted 
as Theorem 1. 

§ 3. Eisenstein series E(z, s) 

Having finished the investigation of the automorphic factors of the 
theta function (1), we are naturally led to the following Eisenstein series: 
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Here, z is a point in the upper half plane H, sis a complex number, I' 0 is 

the group consisting of all (~ ~) e I' with c=O, and X(q, 1) is as in 

Theorem 1. Moreover, arg(cz+d) is always normalized by 

(15) -7t'<arg(cz+d)<7t' 

in accordance with (2). The series (14) i~ absolutely convergent for Res>2, 
and satisfies the transformation formula 

(16) E(z, s)=X(q, l)e·< 112,targ<cz+t.1)E(qz, s), (q EI'). 

Therefore one can expect that E(z, s) may coincide with .V.(z) at s=½, 
That this is actually the case will be shown in Section 7. 

In this section, we shall observe the effect on E(z, s) of the invariant 
differential operator 
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