Advanced Studies in Pure Mathematics 12, 1987 Galois Representations and Arithmetic Algebraic Geometry pp. 343–373

Class Field Theory for Two Dimensional Local Rings

Shuji Saito

Contents

Introduction

Notations

- §1 The statements of the main results
- §2 The determination of Ker (Ψ_K)
- §3 The ramification along the special fiber
- §4 A finiteness theorem
- §5 The Hasse principle for A
- §6 A duality theorem on the *p*-primary part
- §7 The proof of the existence theorem (the prime-to-p part)
- §8 The proof of the existence theorem (the *p*-primary part)

References

Introduction

Let A be an excellent normal two-dimensional henselian local ring with finite residue field F and quotient field K. The purpose of this paper is to construct the class field theory for K, using the method and results in [S-1]. Let P be the set of all prime ideals of height one in A. For each $p \in P$, let A_p be the henselization of A at p and let K_p (resp. $\kappa(p)$) be its quotient (resp. residue) field. Then, K_p is a henselian two-dimensional local field in the sense of [K-1] (cf. also [S-1] (2.2)). For such a field, K. Kato constructed the class field theory in [K-1] and [K-2]. Then, our method is to put together these local theories, which is a standard technique in the classical class field theory. To state our main results, we recall briefly some results in [K-1] and [K-2]: In general, for a noetherian scheme Z, Put $H^1(Z) = H^1(Z_{et}, Q/Z)$ which is identified with the Pontrijagin dual of the abelian fundamental group $\pi_1^{ab}(Z)$. For a noetherian ring R, we put $H^1(R) = H^1(\text{Spec}(R))$. For each $p \in P$, Kato constructed a canonical homomorphism

$$\Psi_{K\mathfrak{p}}\colon H^1(K_{\mathfrak{p}}) \longrightarrow (K_2(K_{\mathfrak{p}}))^*_{\mathrm{tor}},$$

Received April 2, 1986.