Advanced Studies in Pure Mathematics 12, 1987 Galois Representations and Arithmetic Algebraic Geometry pp. 201–219

The Lower Central Series of the Pure Braid Group of an Algebraic Curve

Toshitake Kohno and Takayuki Oda

Dedicated to Professor Nagayoshi Iwahori on his 60-th birthday

§1. Main results

This short note contains four theorems: two results on the lower central series of the pure braid group of a Riemann surface and two arithmetic analogies of these theorems.

Let us describe the first two results. Let R be a Riemann surface of genus g, let $\prod_{i=1}^{n} R$ denote the *n*-fold product space of R, and let $F_{0,n}R$ denote the subspace

$$F_{0,n}R = \{(z_1, z_2, \cdots, z_n) \in \prod_{i=1}^n R | z_i \neq z_j, \text{ if } i \neq j\}.$$

The space $F_{0,n}R$ is a $K(\pi, 1)$ -space, and the fundamental group of $F_{0,n}R$ is the pure braid group with *n* strings of the Riemann surface *R* (cf. Birman [2], Chap. 2).

In general, for a simplicial complex X we define the holonomy Lie algebra of X over Q in the following way (see [12]). Let

$$\eta: H_2(X; \boldsymbol{Q}) \longrightarrow \wedge^2 H_1(X; \boldsymbol{Q})$$

be the dual of the cup product homomorphism. Let $\mathscr{L}(H_1(X; \mathbf{Q}))$ be the free Lie algebra generated by $H_1(X; \mathbf{Q})$ over \mathbf{Q} . We identify the homogeneous part of degree 2 in $\mathscr{L}(H_1(X; \mathbf{Q}))$ with $\wedge^2 H_1(X; \mathbf{Q})$. We denote by J the homogeneous ideal of $\mathscr{L}(H_1(X; \mathbf{Q}))$ generated by the image of η . The holonomy Lie algebra \mathfrak{g}_X over \mathbf{Q} is defined to be $\mathscr{L}(H_1(X; \mathbf{Q}))/J$. Let

$$\Gamma_1 \mathfrak{g}_X \supset \cdots \supset \Gamma_m \mathfrak{g}_X \supset \cdots$$

be the lower central series of g_x defined recursively by

Received March 26, 1986.