Advanced Studies in Pure Mathematics 12, 1987 Galois Representations and Arithmetic Algebraic Geometry pp. 119–135

Some Observations on Jacobi Sums

Tetsuji Shioda

Dedicated to Professor S. Iyanaga for his 80th birthday

In this paper, we shall be interested in the properties of the rational numbers $N(1-j(\alpha)q^{-n/2})$ which are the norm of the difference of 1 and $j(\alpha)q^{-n/2}$ (algebraic numbers of absolute value 1 in a cyclotomic field) where $j(\alpha)$ are the Jacobi sums defined below by (1.3), α being suitable (n+2)-tuples of integers modulo m. Typically, a formula of the form

$$N(1-j(\alpha)q^{-n/2}) = (\text{square})(m\text{-power})/(q\text{-power})$$

seems to hold for *m* prime and *n* even, and we want to understand such a phenomenon in connection with arithmetic geometry of the Fermat varieties. The main result is Theorem 7.1 in Section 7 for the case n=2. The plan of the paper will be found at the end of Section 1.

Notation. Throughout the paper, the following notation will be used. m: a fixed positive integer >2

 $K = Q(\zeta_m)$: the *m*-th cyclotomic field $(\zeta_m = e^{2\pi i/m})$

n: a non-negative integer

 \mathfrak{A}_m^n : the set of (n+2)-tuples $\alpha = (a_0, \dots, a_{n+1})$ such that

$$a_i \in \mathbb{Z}/m, \quad a_i \neq 0, \quad \sum_{i=0}^{n+1} a_i = 0$$

 $\begin{aligned} \|\alpha\| &= \sum_{\substack{i=0\\i=0}}^{n+1} \langle a_i/m \rangle - 1. \quad (\langle x \rangle \text{ is the fractional part of } x \in \mathbf{Q}/\mathbf{Z}). \\ p: a prime number, <math>p \nmid m. \\ q &= p^{\nu}: a \text{ power of } p \text{ such that } q \equiv 1 \pmod{m} \\ j(\alpha): \text{ the Jacobi sum (see § 1, (1.3))} \\ X_m^n(q): \text{ the Fermat variety } \sum_{\substack{n=1\\i=0}}^{n+1} X_i^m = 0 \text{ in } \mathbf{P}^{n+1} \text{ defined over } \mathbf{F}_q. \\ G_m^n &= (\mu_m)^{n+1}/(\text{diagonal}) \text{ regarded as a subgroup of Aut } (X_m^n(q)) \\ \hat{G}_m^n &= \text{the character group of } G_m^n \\ &= \{(a_0, \cdots, a_{n+1}) \mid a_i \in \mathbf{Z}/m, \sum_{\substack{i=0\\i=0}}^{n+1} a_i = 0\} \\ 0(\hat{G}_m^n): & \mu & \text{ where } \mathbf{M}_m^n \end{aligned}$

Received April 11, 1986.