Advanced Studies in Pure Mathematics 12, 1987 Galois Representations and Arithmetic Algebraic Geometry pp. 87–118

On the *l*-Adic Expansion of Certain Gauss Sums and Its Applications^{*)}

Hiroo Miki

Introduction

In the present paper, we shall give a new explicit formula on the *l*-adic expansion (mod π^{l}) of certain Gauss sums (see Theorem 1 in Section 1).

Let p be any prime number and let m > 1 be a natural number which is not divisible by p. Let ζ_m be a primitive *m*-th root of unity in the field of complex numbers C. Let Q be the field of rational numbers and let Zbe the ring of rational integers. Fix a prime ideal p of $Q(\zeta_m)$ lying above pand put Np = q, where Np is the absolute norm of p. Note that m|(q-1). Let F_q be the finite field of q elements. Let

$$\chi_{\mathfrak{p}}(x \mod \mathfrak{p}) = \left(\frac{x}{\mathfrak{p}}\right)_m$$

be the *m*-th power residue symbol in $Q(\zeta_m)$, i.e.,

$$\chi_n(x \mod \mathfrak{p}) \equiv x^{(q-1)/m} \pmod{\mathfrak{p}}$$

for $x \in \mathbb{Z}[\zeta_m]$. $\chi_{\mathfrak{p}}$ induces a homomorphism of the multiplicative group F_q^{\times} of F_q to \mathbb{C}^{\times} of order *m* and $\chi_{\mathfrak{p}}(0) = 0$. Here we identify F_q and $\mathbb{Z}[\zeta_m]/\mathfrak{p}$. Let *T* be the trace of F_q to F_p and put

$$\psi(x) = \zeta_p^{T(x)}$$

for $x \in F_q$. Then ψ is a homomorphism of the additive group F_q to the multiplicative group C^{\times} .

Definition. For each $a \in \mathbb{Z}$, put

Received May 29, 1986.

^{*)} This is the details of my lecture in Symp. on Algebraic Number Theory, October 1985 at the Research Institute for Mathematical Sciences Kyoto Univ., which is a revised and extended version of my intensive lectures at Kanazawa Univ. and Tokyo Institute of Technology in Jan.-Feb. 1985. I also gave my intensive lecture related to this subject at Kyushu Univ. in Dec. 1985 and at Nagoya Univ. in July 1986.