Advanced Studies in Pure Mathematics 11, 1987 Commutative Algebra and Combinatorics pp. 187-213

Generalized *H*-Vectors, Intersection Cohomology of Toric Varieties, and Related Results

Richard Stanley*

§ 1. Background

Let \mathscr{P} be a simplicial convex *d*-polytope, i.e., a *d*-dimensional convex polytope all of whose proper faces are simplices. Let $f_i = f_i(\mathscr{P})$ denote the number of *i*-dimensional faces of \mathscr{P} . The vector $f(\mathscr{P}) = (f_0, f_1, \cdots, f_{d-1})$ is called the *f*-vector of \mathscr{P} , and in [B-L] and $[S_5]$ such vectors are completely characterized. A survey of this subject appears in $[S_8]$. Here we will be interested in extending the ideas of $[S_8]$ to the non-simplicial case. While we come nowhere near a characterization of *f*-vectors for non-simplicial polytopes \mathscr{P} , we do discuss an interesting numerical sequence associated with \mathscr{P} . We also discuss some extensions of this work, as well as many conjectures and open problems. For instance, Conjectures 4.2 (b), 4.3 and 5.5 (a) extend the result that the *h*-vector of a Cohen-Macaulay complex is nonnegative.

Let us first review some material related to simplicial complexes, most of it to be found in [S₃]. Let Δ be an abstract (d-1)-dimensional simplicial complex on the *n*-element vertex set *V*, with $f_i = f_i(\Delta)$ *i*-dimensional faces (or faces with (i+1)-elements). Here the empty set \emptyset is regarded as a face of dimension -1, so $f_{-1}=1$. Define a vector $h(\Delta) =$ (h_0, h_1, \dots, h_d) , called the *h*-vector of Δ , by the condition

(1)
$$\sum_{i=0}^{d} f_{i-1}(x-1)^{d-i} = \sum_{i=0}^{d} h_i x^{d-i}.$$

In particular,

(2) $h_0 = 1, h_1 = f_0 - d, h_d = (-1)^{d-1} \tilde{\chi}(\Delta), \sum h_i = f_{d-1},$

where $\tilde{\chi}(\Delta)$ denotes the reduced Euler characteristic of Δ , i.e., $\tilde{\chi}(\Delta) = \sum_{i \geq -1} (-1)^i f_i$. The *Dehn-Sommerville equations* for the simplicial polytope \mathscr{P} assert that $h_i = h_{d-i}$ when Δ is the boundary complex $\Delta(\mathscr{P})$ of \mathscr{P} (so $f_i(\mathscr{P}) = f_i(\Delta)$, and we set $h_i(\mathscr{P}) = h_i(\Delta)$).

Received November 9, 1985.

^{*} Partially supported by NSF Grant #MCS-8104855.