Advanced Studies in Pure Mathematics 11, 1987 Commutative Algebra and Combinatorics pp. 161–166

On the Injective Envelope of the Residue Field of a Local Ring

Hideyuki Matsumura

0. In this note a ring will mean a commutative noetherian ring. When we say (A, m, k) is a local ring', we mean that A is a local ring, m is its maximal ideal and k is its residue field.

1. Let A be a ring and M be an A-module. The injective envelope $E = E_A(M)$ of M is defined by the following properties:

(1) E contains M as a submodule, and E is an essential extension of M.

(2) E is an injective A-module.

The first condition is usually easy to check, while the second is sometimes not so easy to verify.

When (A, m, k) is a local ring, $E := E_A(k)$ has the following remarkable property: if $N \neq 0$ is an A-module (not necessarily finitely generated), then $\operatorname{Hom}_A(N, E) \neq 0$. (To see this, take a non-zero element x of N and set $I:=\operatorname{ann}(x)$. Then there is a non-zero A-linear mapping $Ax \simeq A/I \rightarrow A/m = k \rightarrow E$; extend it to an A-linear mapping $N \rightarrow E$.) Moreover, since E is an essential extension of k, it is easy to see that $\operatorname{Ass}_A(E) = \{m\}$, and consequently every element of E is killed by a suitable power of m, so that E can be viewed as a module over the completion \hat{A} of A. Matlis ([1] Theorem 3.7) showed that $\operatorname{Hom}_A(E, E) = \hat{A}$, in other words every endomorphism of the A-module E is realized by multiplication by exactly one element of \hat{A} . In particular, E is a faithful \hat{A} -module (i.e. $a \in \hat{A}, aE = 0 \Rightarrow a = 0$). Using these facts we obtain the following characterization of $E_A(k)$ when A is complete.

Theorem 1. Let (A, m, k) be a complete local ring and E be an Amodule containing k as submodule. Then E is the injective envelope of k if and only if

(a) E is an essential extension of k, and

(b) *E* is a faithful *A*-module.

Received January 11, 1986.