Advanced Studies in Pure Mathematics 11, 1987 Commutative Algebra and Combinatorics pp. 147-160

Littlewood's Formulas and their Application to Representations of Classical Weyl Groups

Kazuhiko Koike* and Itaru Terada

Introduction

The reciprocity between the representations of the general linear groups and the symmetric groups is well known. For example, in I.G. Macdonald's book [M], this reciprocity is described as a ring isomorphism between the ring Λ of symmetric functions in countably many variables (see [M], [K-T]) and the graded ring $R = \bigoplus_n R(\mathfrak{S}_n)$, where $R(\mathfrak{S}_n)$ is the free Z-module generated by the irreducible characters of the symmetric group of degree n and the multiplication in R is defined for $f \in R(\mathfrak{S}_n)$ and $g \in R(\mathfrak{S}_m)$ by $f \cdot g = \operatorname{ind}_{\mathfrak{S}_m \times \mathfrak{S}_m}^{\mathfrak{S}_m + m}(f \times g)$. In an analogous manner, we define a graded ring $R_W = \bigoplus_n R(W(B_n))$ using the characters of the Weyl groups $W(B_n)$ of type B_n and a homomorphism from this ring R_W to Λ . This homomorphism clarifies the relationship between the representations of GL(n) and the rule of decomposition (into irreducible constituents) of the representations of \mathfrak{S}_{2n} induced by an irreducible representation of $W(B_n)$. In this procedure, Littlewood's formulas play a crucial role. Here, Littlewood's formulas mean the expansion formulas of the following four symmetric rational functions into Schur functions:

(1)
$$\prod_{\substack{1 \le i < j \le n \\ 1 \le i \le j \le n}} (1 - z_i z_j)^{-1},$$

(2)
$$\prod_{\substack{1 \le i \le j \le n \\ 1 \le i \le j \le n}} (1 - z_i z_j)^{-1},$$

(3)
$$\prod_{\substack{1 \le i \le j \le n \\ 1 \le i \le j \le n}} (1 - z_i z_j),$$

(4)
$$\prod_{\substack{1 \le i \le j \le n \\ 1 \le i \le j \le n}} (1 - z_i z_j).$$

These formulas are also essential in describing the relations between the representations of GL(n) and those of Sp(2n) and SO(n) (see [K-T]).

§ 1. Littlewood's formulas

The four rational functions listed in the introduction are all \mathfrak{S}_n -invariant (where \mathfrak{S}_n acts by the permutations of variables $\{z_i\}_{i=1}^n$), There-

Received October 28, 1985.

^{*} Supported by Grant Aid for Scientific Research.