Advanced Studies in Pure Mathematics 10, 1987 Algebraic Geometry, Sendai, 1985 pp. 733–753

Constructible Sheaves Associated to Whittaker Functions

Tomohide Terasoma

Introduction

Let X_0 be a proper smooth geometrically connected curve over the field F_q with q elements. Let K be the function field of X_0 over F_q , A the adele ring of K, and ℓ a prime number prime to the characteristic of F_q . Let $\pi_1(X_0)$ be the fundamental group of X_0 . (For the fundamental group, see [8, p. 39].) We always assume that a continuous representation

 $\rho: \pi_1(X_0) \longrightarrow \operatorname{GL}(n, \overline{Q}_i) \qquad (\overline{Q}_i: \text{ an algebraic closure of } Q_i)$

of $\pi_1(X_0)$ factors through

 $\rho: \pi_1(X_0) \longrightarrow \operatorname{GL}(n, E),$

where E is a finite extension of Q_{ℓ} .

Such a ρ gives rise to an *L*-function

 $L(\rho, s) = \prod_{v \in |X_0|} \det \left(1 - \operatorname{Nm}(v)^{-s} \rho(\operatorname{Fr}_v)\right)^{-1} \in \overline{Q}_{\ell}[[q^{-s}]],$

where $|X_0|$ is the set of closed points of X_0 , and Fr_v is the geometric Frobenius substitution at v.

Langlands ([6, p. 211]) asked whether it is an automorphic L-function. (For the definition of automorphic L-function, see [2, p. 49]). Drinfeld (cf. [3]) has solved this problem for n=2. First he expressed the Whittaker function associated to ρ by the trace of the Frobenius substitution on some constructible sheaf. Next, he proved geometrically that the Shalika transform (cf. [9]) of the Whittaker function turns out to be an automorphic form.

For a representation ρ as above, we can associate a function f on GL (n, A) called the Whittaker function for ρ . By the functional equation satisfied by the Whittaker function, it can be regarded as a function on $U_K \setminus GL(n, A)/GL(n, \hat{O})$, where U_K is the subgroup of upper triangular

Received November 30, 1985.

Revised May 27, 1986.