Advanced Studies in Pure Mathematics 10, 1987 Algebraic Geometry, Sendai, 1985 pp. 415-447

Projective Degenerations of Surfaces according to S. Tsunoda

Masayoshi Miyanishi

§1. Introduction

This is a partial and incomplete account of a work of S. Tsunoda on projective degenerations of algebraic surfaces. We shall begin with some necessary definitions. In the following, we take the complex field C as the ground field.

Degenerations of algebraic surfaces as considered in Persson [9] mean the surfaces \mathscr{X}_0 appearing in the following setup:

Let $\pi: \mathscr{X} \to \Delta$ be a proper, flat morphism of a smooth threefold X defined over C onto a small open disc Δ such that π is smooth over $\Delta^* = \Delta - \{0\}$. Then $\mathscr{X}_0 = \pi^{-1}(0)$. Namely, \mathscr{X}_0 is thought of as a degeneration of a general smooth fiber \mathscr{X}_t $(t \neq 0)$.

In considering degenerations of algebraic surfaces, it is standard, in view of Mumford's theorem on semistable reduction, to treat the case where the fiber \mathscr{X}_0 is a reduced divisor with simple normal crossings, i.e., $\pi: \mathscr{X} \to \Delta$ is a semistable degeneration.

The first important contribution was made by Kulikov [5], where he considered the degenerations of K3 surfaces and he employed essentially an operation of non-algebraic nature, called "a generic contraction". The same subject was taken up later by Persson-Pinkham [10]. Their result says that:

If $\pi: \mathscr{X} \to \Delta$ is a semistable degeneration of algebraic surfaces such that a general fiber $\mathscr{X}_t, t \neq 0$ has trivial canonical divisor and that all components of \mathscr{X}_0 are algebraic, then there exists a semistable modification $\pi': \mathscr{X}' \to \Delta$ of π such that the canonical divisor of the total space \mathscr{X}' is trivial.

D. Morrison [8] and Tsuchihashi [11] considered the degenerations of Enriques' and hyperelliptic surfaces.

On the other hand, concerning the construction of a minimal model in dimension three, one can consider the following problem (cf. [4]).

Given a nonsingular projective threefold X of non-negative Kodaira

Received November 16, 1985.