Advanced Studies in Pure Mathematics 10, 1987 Algebraic Geometry, Sendai, 1985 pp. 179–183

Coverings of Algebraic Varieties

Rajendra Vasant Gurjar*

Introduction

In this article we survey and prove some of the results about (unramified) coverings of algebraic varieties. Recently Madhav Nori has asked the following question.

Conjecture A. Let S be a projective, non-singular surface over the field of complex numbers C. Suppose D is an effective divisor on S with $D^2 > 0$. Let N be the normal subgroup of $\pi_1(S)$ generated by the images of the fundamental groups of the non-singular models of all the irreducible components of D. Then the index $[\pi_1(S) : N]$ is finite.

If the conjecture is true, then any surface (smooth, projective) possessing a (possibly singular) rational curve of positive self-intersection would have a finite fundamental group! In [7] Nori verifies the conjecture in a special case. Surprisingly, this conjecture is related to the following old question:

Conjecture B. Let X be a smooth, projective variety over C. Then the universal covering space of X is holomorphically convex.

Recall that a complex manifold M is said to be holomorphically convex if given a sequence of distinct points x_1, x_2, \cdots in M without a limit point in M, there exists a holomorphic function f on M such that the set $\{f(x_n)\}_{n=1,2,\dots}$ is unbounded.

A compact, complex manifold is vacuously holomorphically convex. We will prove the following results in this paper.

(1) (See § 1, Proposition 1). Suppose every covering space $\tilde{S} \rightarrow S$ is holomorphically convex. Then Conjecture A is valid for S, if D is an irreducible curve. If the universal covering space is holomorphically convex, then Conjecture A is true, if D is a rational curve (possibly singular).

(2) (See §1, Theorem). Let $\pi: S \rightarrow \Delta$ be an elliptic surface. If

Received October 28, 1985.

^{*)} The author was supported by a fellowship from the Japan Society for the Promotion of Science.