Advanced Studies in Pure Mathematics 10, 1987 Algebraic Geometry, Sendai, 1985 pp. 11-40

Uniqueness of Einstein Kähler Metrics Modulo Connected Group Actions

Shigetoshi Bando*) and Toshiki Mabuchi**)

Dedicated to Professor Kunihiko Kodaira on his seventieth birthday

§[0. Introduction

Throughout this paper, we fix an arbitrary *n*-dimensional compact complex manifold X with positive first Chern class $c_1(X)_R > 0$. We then put

 \mathscr{K} : the set of all Kähler forms on X representing $2\pi c_1(X)_R$, $\mathscr{K}^+ := \{\omega \in \mathscr{K} \mid \omega \text{ has positive definite Ricci tensor}\},$ $\mathscr{E} := \{\omega \in \mathscr{K} \mid \omega \text{ is an Einstein form}\},$ $C^{\infty}(X)_R$: the space of real-valued C^{∞} -functions on X, Aut (X): the group of holomorphic automorphisms of X, $G := \operatorname{Aut}^0(X)$: the identity component of Aut (X).

Furthermore, Aut (X) is always assumed to act from the *right* on \mathscr{K} by $(\omega, g) \in \mathscr{K} \times \text{Aut}(X) \mapsto g^* \omega \in \mathscr{K}$.

The main purpose of this paper is to prove the uniqueness of Einstein Kähler metrics, if any, on X up to G-action. Such uniqueness was known only for i) Kähler C-spaces (cf. Matsushima [12]) and ii) some non-homogeneous Einstein manifolds recently discovered by Sakane [13]. Now, the correct statement we obtain has the following stronger form as announced earlier in [9]:

Theorem A. Fix an element ω_1 of \mathcal{K} . Let $\mu^+ : \mathcal{K}^+ \to \mathbf{R}$ be the restriction to \mathcal{K}^+ of the \mathcal{K} -energy map $\omega \in \mathcal{K} \mapsto M(\omega_1, \omega) \in \mathbf{R}$ of the Kähler manifold (X, ω_1) (see Section 1, also [9]). Assume that $\mathcal{E} \neq \phi$. Then

(i) μ^+ is bounded from below and takes its absolute minimum exactly on \mathscr{E} .

Received November 30, 1985.

^{*&#}x27; Partially supported by the Yukawa Foundation.

^{**)} This work was completed when the last named author stayed at the Max-Planck-Institut für Mathematik in Bonn, to which he expresses his hearty thanks for its hospitality and assistance.