Advanced Studies in Pure Mathematics 9, 1986 Homotopy Theory and Related Topics pp. 335–344.

On the Image $\rho(BP^*(X) \rightarrow H^*(X; Z_p))$

Nobuaki Yagita

In this paper we study ways to calculate the Brown-Peterson cohomology $BP^*(X)$ localized at a prime p when the Steenrod algebra action on the ordinary mod p cohomology $H^*(X; Z_p) = HZ_p^*(X)$ is known. One of the most difficult problems is to know which elements in $H^*(X)_{(p)}$ are permanent cycles in the Atiyah-Hirzebruch spectral sequence $H^*(X; BP^*) \Rightarrow BP^*(X)$. This is equivalent to know the image $\rho: BP^*(X)$ $\rightarrow H^*(X)_{(p)}$ where ρ is the Thom map.

Cohomology operations on $HZ_p^*(X)$ give some informations about the image. For example if $Q_n x \neq 0$ in $HZ_p^*(X)$, then x is not in Image $\rho(BP^*(X) \rightarrow HZ_p^*(X))$, where Q_n is the Milnor primitive operation. We study the above facts in more general situation.

Let: $\rho: h \rightarrow k$ be a map of spectra. In Section 1, we note the importance of Image $\rho(h^*(k) \rightarrow k^*(k)) = \rho(h, k)$, indeed, if an operation θ is in $\rho(h, k)$, then for each $x \in k^*(X)$, $\theta x \in \text{Image } \rho(h^*(X) \rightarrow k^*(X))$. The image $\rho(P(n), P(m))$ and $\rho(k(n), HZ_p)$ are studied in Section 2. Since $\rho(PB, HZ_p) = 0$, we consider K(Z, n) or $K(Z_n, n)$ as k instead of HZ_p in Section 3. Here we introduce the Tamanoi's results. In Section 4, $\rho(BP, K(Z, 3))$ and $BP^*(K(Z, 3))$ are studied. Applications for finite H-spaces are given in Section 5. For example, in the case p = 2, let X be a simply connected finite associative H-space and let Q^* be the indecomposable elements in $HZ_2^*(X)$. Then

$$(Q^{2^{n+1}})^2 \subset \operatorname{Image} \rho(BP^*(X) \longrightarrow HZ^*_2(X)/(HZ^+_2(X)^3)).$$

The author thanks to the referee who pointed out this proof of Proposition 2.4 and corrected many errors in the first version.

§ 1. Maps of cohomology theories

Let $\rho: h \to k$ be a map of spectra and let $k = \{k_n\}$ be the Ω -spectrum, i.e., $k^n(X) \simeq [X, k_n]$. For simplicity of notations, let us write Image $\rho(h^*(k) \to k^*(k))$ (resp. Image $\rho(h(k_n) \to k(k_n))$) by $\rho(h, k)$ (resp. $\rho(h, k_n)$).

Received January 18, 1985.