Advanced Studies in Pure Mathematics 9, 1986 Homotopy Theory and Related Topics pp. 287–291

A Characterization of the Kahn-Priddy Map

Juno Mukai

Dedicated to Professor Nobuo Shimada on his 60th birthday

§ 1. Introduction and statements of main results

We denote by P^n the real *n*-dimensional projective space. $E^k P^n$ for $k \ge 0$ denotes the k-fold reduced suspension of P^n and $E^k \phi_n \colon E^{n+k} P^{n-1} \rightarrow S^{n+k}$ the k-fold reduced suspension of a mapping $\phi_n \colon E^n P^{n-1} \rightarrow S^n$. $E^k \phi_n$ for $n \ge 2$ is called a Kahn-Priddy map if the homotopy class of the restriction $E^k \phi_n | S^{n+k+1}$ generates $\pi_{n+k+1}(S^{n+k})$. We denote by s(n) the number of *i* such that $0 \le i \le n$ and $i \equiv 0, 1, 2$ or 4 mod 8.

By abuse of notation, we often use the same letter for a mapping and its homotopy class. Our first result is the following

Theorem 1.1. Let ϕ_{2n+1} : $E^{2n+1}P^{2n} \rightarrow S^{2n+1}$ be a Kahn-Priddy map. Then the order of $E^k \phi_{2n+1}$ is $2^{s(2n)}$ for $k \ge 0$.

For a *CW*-complex *K*, we put $\pi^n(K) = [K, S^n]$ which is *n*-th cohomotopy group if K = EK' or dim $K \le 2n-2$. Let $H: \pi^n(E^nP^{n-1}) \rightarrow \pi^{2n-1}(E^nP^{n-1})$ be the Hopf homomorphism [10] and $p_n: P^n \rightarrow S^n$ the canonical map. Then our second result is the following

Theorem 1.2. $\phi_{2n+1}: E^{2n+1}P^{2n} \rightarrow S^{2n+1}$ is a Kahn-Priddy map if and only if $H(\phi_{2n+1}) = E^{2n+1}p_{2n}$.

Our basic idea is based on [3]. To prove Theorem 1.1, we shall use the \widetilde{KO} -group of P^n [1] and the suspension order of the identity class of $E^{2n}P^{2n}$ [9]. To prove Theorem 1.2, we shall use the essential uniqueness of Kahn-Priddy maps [2] and the *EHP*-sequence.

The problem determining the order of the Kahn-Priddy map was posed by Goro Nishida who solved it in the case of odd primes [7]. The

Received December 24, 1984.

Revised June 10, 1985.

The original version of this note is based on a talk at Fukuoka University in 1982.