On the Signature Invariants of Infinite Cyclic Coverings of Even Dimensional Manifolds

Akio Kawauchi

§ 0. Introduction

We consider a compact oriented topological 2m-manifold W with boundary M (which may be ϕ). Let $\gamma \in H^1(W; \mathbb{Z})$ and $\dot{\gamma} = \gamma \mid M \in H^1(M; \mathbb{Z})$ Z). Let \widetilde{W} be the infinite cyclic covering space of W associated with γ , whose covering transformation group is infinite cyclic and denoted by $\langle t \rangle$ with a specified generator t (cf. [K3, § 0]). The boundary \tilde{M} of \tilde{W} is the infinite cyclic covering space of M associated with $\dot{\gamma}$ (if it is not ϕ), and we have the signature invariants $\sigma_a^{\dagger}(M)$, $a \in [-1, 1]$, of $(M, \dot{\gamma})$ (cf. [K2], [K3]). These signature invariants were defined as a result of a duality on the cohomology ring $H^*(\tilde{M})$. This duality was first observed by Milnor [M], under the restriction that $H^*(\tilde{M})$ is finitely generated over a field. This restriction was removed in [K1]. Neumann [N2] has independently shown it by modifying the Blanchfield linking form. [Remark: In [M], [K1] and [N2], it was assumed that M is triangulated, but one can find a proof of its topological version in [K3, Appendix B].] In [K3], the author could compute these signature invariants by using a certain linking matrix on $(M, \dot{7})$. By convention, $\sigma_a^i(M) = 0$ if $M = \phi$. The purpose of this paper is to introduce and compute signature invariants, $\tau_{a\pm 0}^{r}(W)$ of (W, γ) , defined for all $a \pm 0^{*} \in [-1, 1]$ (cf. § 1). It turns out that the set $\{\tau_{a \pm 0}^{r}(W)\}$ $-\operatorname{sign} W \mid a \pm 0 \in [-1, 1]$ and $\{\sigma_a^i(M) \mid a \in [-1, 1], a \neq -\varepsilon(m)\}$ determine each other, where $\varepsilon(m) = (-1)^m$ and sign W denotes the usual signature of W (By convention, sign W=0 if $\varepsilon(m)=-1$). Moreover, we shall show that $\sigma_{-\varepsilon(m)}^{\dagger}(M)$ can be written in terms of $\tau_{-\varepsilon(m)+\varepsilon(m)0}^{\dagger}(W)$, sign W and a certain signature invariant, sign, W of (W, γ) . Thus, we can see that the signature invariants $\sigma_a^i(M)$, $a \in [-1, 1]$, are all peripheral invariants (the terms due to Neumann [N1]), such as an invariant of Atiyah/Singer [A/S], called α -invariant by Hirzebruch/Zagier [H/Z] and an invariant of Atiyah/ Patodi/Singer [A/P/S], called γ -invariant by Neumann [N1], [N2]. The

Received December 27, 1984.

^{*)} We use the convention $a+0 \in [-1, 1]$ for $a \in [-1, 1)$ and $a-0 \in [-1, 1]$ for $a \in (-1, 1]$.