Advanced Studies in Pure Mathematics 9, 1986 Homotopy Theory and Related Topics pp. 173–176

On 3-dimensional Bounded Cohomology of Surfaces

Tomoyoshi Yoshida

§ 1. Introduction

In [3], Gromov introduced the notion of the bounded cohomology $H_b^*(M, \mathbf{R})$ of a manifold M. This is the cohomology of the complex of singular cochains ϕ which have the property:

There exists a constant c such that $|\phi(\sigma)| < c$ for any singular simplex σ .

Let S be a closed oriented surface of genus ≥ 2 . In [1] and [5], it is shown that $H_b^2(S, \mathbf{R})$ is infinitely generated.

In this paper, we shall show

Theorem 1. $H^3_b(S, \mathbf{R})$ is infinitely generated.

Our method is an application of Thurston's theory of pleated (uncrumpled) surfaces in hyperbolic 3-manifolds ([7]).

§ 2. A construction of elements of $H^3_b(S, R)$

For a convenience, we choose and fix a complete hyperbolic structure on *S*.

Let f be a pseudo Anosov diffeomorphism of S. Let M_f be the mapping torus of f. It is the identification space obtained from $S \times [0, 1]$ by equivalence relation $(x, 0) \sim (f(x), 1)$ $(x \in S)$. M_f admits a complete hyperbolic structure which is unique up to isometry ([6]). The projection onto the second factor $S \times [0, 1] \rightarrow [0, 1]$ induces a fibering $p: M_f \rightarrow S^1$. Let \tilde{M}_f be the infinite cyclic regular covering space of M_f defined by the pull-back by p of $e: \mathbb{R} \rightarrow S^1$, where $e(t) = \exp 2\pi \sqrt{-1} t$, $t \in \mathbb{R}$. The hyperbolic structure on M_f can be lifted to the hyperbolic structure on \tilde{M}_f . There is a natural inclusion $S \times [0, 1] \subset \tilde{M}_f$ and let $j: S \rightarrow \tilde{M}_f$ be the embedding defined by $j(x) = (x, 0) \in S \times [0, 1] \subset \tilde{M}_f$.

Let Δ be the standard 3-simplex in \mathbb{R}^4 . Let $\sigma: \Delta \to S$ be a singular 3-simplex of S. Then $j\sigma: \Delta \to \tilde{M}_f$ is a singular 3-simplex of \tilde{M}_f . The universal covering space of \tilde{M}_f is isometric to the hyperbolic 3-space H^3 ,

Received January 25, 1985.