On Uniformizations of Orbifolds

Mitsuyoshi Kato*

§ 1. Introduction

By a transformation group, we shall mean a pair (G, M) of a connected paracompact n-manifold M and a group G of topological transformations of M. For a second transformation group (H, N), by a covering map (ϕ, f) : $(G, M) \rightarrow (H, N)$, we shall mean a pair of an epimorphism $\phi: G \rightarrow H$ and a regular covering map $f: M \rightarrow N$ which is ϕ -equivariant, i.e., $f(g \cdot z) = \phi(g) \cdot f(z)$ for $(g, z) \in G \times M$. In particular, if f is a homeomorphism, then (ϕ, f) is called an isomorphism and (G, M) and (H, N) are said to be isomorphic, written $(G, M) \cong (H, N)$. We shall say that (G, M) is a proper transformation group, if a track of the action mapping $G \times M \rightarrow M \times M$; $(g, z) \mapsto (z, g \cdot z)$ is proper, where G has the discrete topology. In other words, the orbit space $X = \{G \cdot z \mid z \in M\}$ is Hausdorff and (G, M) is discontinuous, i.e., for each point z of M the isotropy subgroup $G_z = \{g \in G | g(z) = z\}$ of G at z is finite and there is a neighborhood U_z , referred to as a G-equivariant neighborhood, of z in M such that $g \cdot U_z = U_z$ for $g \in G_z$ and $g \cdot U_z \cap U_z = \phi$ for $g \in G - G_z$. A proper transformation group (G, M) is locally smooth, if for each point z of M, there is a G-equivariant neighborhood M_z of z in M such that (G_z) M_z) is isomorphic with a finite orthogonal transformation group (G'_z, E_z) , i.e., E_z is euclidean n-space R^n or closed half n-space H_n and G_z' is a finite subgroup of O(n).

In this paper, we concern ourselves with the classification of locally smooth proper transformation groups. Thus by a transformation group (G, M) we shall mean a locally smooth proper one, unless otherwise mentioned.

Now for a transformation group (G, M), we have the orbit space X, which is a connected separable Hausdorff space, and a function $b: X \rightarrow N$

Received May 11, 1985.

^{*}Acknowledgment: The author is grateful to NSF and JSPS for their having supported the U.S.-Japan seminar; Topology of Low Dimensional Manifold hold at the University of Hawaii in January 1982, where a part of results of this paper has been presented. He should mention his debts to Professors Oikawa and Iwahori for their helpful comments.