Advanced Studies in Pure Mathematics 9, 1986 Homotopy Theory and Related Topics pp. 123–128

Classifying Space Constructions in the Rational Homotopy Theory

Katsuyuki Shibata

§ 1. Rational homotopy theory

For simplicity's sake, we restrict our descriptions to the 1-connected case. Namely, let TOP₁ be the category of the 1-connected topological spaces, DGL₁ be that of the 1-reduced (*i.e.* $L_i=0$ for i<1) differential graded rational Lie algebras, and DGA¹ be that of the 1-connected (*i.e.* $A^i=0$ for i<0 and i=1, and $A^0 \cong Q$) differential graded rational algebras. Throughout these categories the notion of the (rational) weak equivalence is defined as follows.

Definition. (i) A continuous map $f: X \rightarrow Y$ is a (rational) weak isomorphism if the induced homomorphism on the rational homotopy groups

$$f_{\sharp}: \pi_{\ast}(X) \otimes Q \longrightarrow \pi_{\ast}(X) \otimes Q$$

is an isomorphism.

(ii) DGL₁-homomorphism $g: (L_*, \partial) \rightarrow (L'_*, \partial')$ is a weak isomorphism if the induced homomorphism on the homology Lie algebras

 $g_*: H_*(L_*, \partial) \longrightarrow H_*(L'_*, \partial')$

is an isomorphism.

(iii) DGA¹-homomorphism $h: (A^*, d) \rightarrow (B^*, d')$ is a weak isomorphism if the induced homomorphism on the cohomology algebras

$$h^*: H^*(A^*, d) \longrightarrow H^*(B^*, d')$$

is an isomorphism.

(iv) In each of the three cases above, the equivalence relation generated by the weak isomorphisms is called *the (rational) weak equivalence* and the corresponding quotient category of this equivalence relation is denoted by $\mathcal{H}_{oq}(_)$.

Received January 1, 1985.