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Introduction 

The concept of the classifying space and characteristic classes are 
great tools in both geometry and topology. 

Originally, the classifying space BG appeared as Grassmannian man­
ifolds in discussing the equivalence of the fibre bundles of a fixed structure 
group G operating effectively on the fibre. And, the equivalence classes 
of such bundles on a CW-complex X are in one-to-one correspondence 
naturally with the homotopy classes of maps/: X -+BG [39]. 

The classifying space BG of a topological group G is characterized as 
the base space of a universal G-bundle G-+EG-+BG of oo-connected total 
space EG. So, up to homotopy type, we may consider that the loop 
space QBG of BG is G, and BG is the de-looping of G. 

For every associative H-space G, a classifying space BG is also con­
structed geometrically, and the construction is applied to give Eilenberg­
Moore spectral sequences. 

Lately, classifying space appeared in the theory of generalized coho­
mology. For each Brown functor F, i.e. a functor F satisfying wedge 
axiom and Mayer-Vietoris axiom, on the category of pointed finite CW­
complexes. Under suitable condition, there exists a classifying space Y 
of F such that the functor F is naturally equivalent to the functor [-, YJ 0 

of pointed homotopy classes. Then the original classifying space BG is 
that for the functor taking principal G-bundles over given base space [42]. 

The characteristic classes of fibre bundles are considered as a natural 
functor of fibre bundles to a cohomology class of the base spaces. For 
classical groups there are specially named characteristic classes, the Chern 
classes en E H 2n for unitary groups and complex general linear groups, the 
Stiefel-Whitney classes Wn E Hn( ; Z/2) for orthogonal groups and real 
general linear groups, the Pontrjagin classes Pn E H 4n for special orthogonal 
groups and real special linear groups, and others. By general theory of 
universal bundles, each characteristic class corresponds to an element of 
the cohomology H*(BG; -). The structure of the cohomology ring 
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