Advanced Studies in Pure Mathematics 9, 1986 Homotopy Theory and Related Topics pp. 27–40

Stable Equivalence of G-Manifolds

Katsuo Kawakubo

Dedicated to Professor Minoru Nakaoka on his 60th birthday

§1. Introduction

Let G be a compact Lie group and M_1 , M_2 be closed G-manifolds. Suppose that there exists a G-homotopy equivalence

$$f: M_1 \longrightarrow M_2.$$

Then a natural question is the following. What kind of consequences follow from it?

For example, the following theorem holds.

Theorem 1 [14], [16]. We have the following equality in $J_G(M_1)$:

 $J_G(T(M_1)) = J_G(f^*(T(M_2))).$

Here $T(M_i)$ denote the tangent G-vector bundles of M_i (i=1, 2) and

 $J_G: KO_G(M_1) \longrightarrow J_G(M_1)$

denotes the equivariant J_{g} -homomorphism.

It is well-known that G-homotopy equivalent manifolds are not necessarily G-diffeomorphic in general [5], [13], [15].

Our first result of the present paper is the following theorem.

Theorem 2. Let M_1 and M_2 be closed G-manifolds. If $f: M_1 \rightarrow M_2$ is a G-homotopy equivalence, then there exist G-vector bundles $\pi_i: E_i \rightarrow M_i$ (i=1, 2) and a G-diffeomorphism

 $\overline{f}: E_1 \longrightarrow E_2$

such that the following diagram

Received February 25, 1985.

Research supported in part by Grant-in-Aid for Scientific Research.