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Introduction 

As to the classical theory of Whitehead torsions and Whitehead 
groups the original works by l.H.C. Whitehead [21], [22], [23] and the 
expository work by l. Milnor [12], 1966, is celebrated. Since then there 
appeared about 1970 the trials [5], [17] to define Whitehead group Wh(X) 
of a space X and to prove the isomorphism 

where the right hand side is the classical algebraically defined Whitehead 
group of the fundamental group of X. 

In 1974 S. IIIman [7] defined equivariant Whitehead group of a finite 
G-CW-complex X, denoted by Who(X), where G is a compact Lie group, 
equivariant Whitehead torsion for a G-homotopy equivalence f: X -+ Y 
between finite G-CW-complexes X, Y as an element of Who(X), and 
described the basic properties of Who(X). He tried also to decompose 
Who (X) and to describe it algebraically for abelian G and proposed to 
use restricted Whitehead groups Who (X, ff) with respect to families ff 
of closed subgroups of G in studies of equivariant Whitehead group of X. 

In 1978 M. Rothenberg [13] defined equivariant Whitehead groups 
and torsions in another way for finite G and obtained several results 
making use of them. Among others he obtained a form of equivariant 
s-cobordism theorem for smooth actions of compact Lie groups G in 3.4 
by introducing certain other invariants Whk(t) for closed subgroups H 
of G. In case G is finite and X(H) is connected and simply connected 
for all subgroups H of G he proved the collection of the invariants 
WhH(t) coincides with his G-Whitehead torsion in 3.10. Here we remark 
that our definition of G-h-cobordism [3], [9] is different from that of 
Rothenberg's. Probably, under the assumption of our dimension gap 
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