Advanced Studies in Pure Mathematics 9, 1986 Homotopy Theory and Related Topics pp. 1–25

Equivariant Whitehead Groups and G-Expansion Categories

Shôrô Araki

Dedicated to Professor Minoru Nakaoka on his 60th birthday

Introduction

As to the classical theory of Whitehead torsions and Whitehead groups the original works by J.H.C. Whitehead [21], [22], [23] and the expository work by J. Milnor [12], 1966, is celebrated. Since then there appeared about 1970 the trials [5], [17] to define Whitehead group Wh(X) of a space X and to prove the isomorphism

$Wh(X) \cong Wh(\pi_1 X),$

where the right hand side is the classical algebraically defined Whitehead group of the fundamental group of X.

In 1974 S. Illman [7] defined equivariant Whitehead group of a finite *G-CW*-complex X, denoted by $Wh_G(X)$, where G is a compact Lie group, equivariant Whitehead torsion for a G-homotopy equivalence $f: X \rightarrow Y$ between finite *G-CW*-complexes X, Y as an element of $Wh_G(X)$, and described the basic properties of $Wh_G(X)$. He tried also to decompose $Wh_G(X)$ and to describe it algebraically for abelian G and proposed to use restricted Whitehead groups $Wh_G(X, \mathcal{F})$ with respect to families \mathcal{F} of closed subgroups of G in studies of equivariant Whitehead group of X.

In 1978 M. Rothenberg [13] defined equivariant Whitehead groups and torsions in another way for finite G and obtained several results making use of them. Among others he obtained a form of equivariant s-cobordism theorem for smooth actions of compact Lie groups G in 3.4 by introducing certain other invariants $Wh_{H}^{i}(\iota)$ for closed subgroups H of G. In case G is finite and $X^{(H)}$ is connected and simply connected for all subgroups H of G he proved the collection of the invariants $Wh_{H}(\iota)$ coincides with his G-Whitehead torsion in 3.10. Here we remark that our definition of G-h-cobordism [3], [9] is different from that of Rothenberg's. Probably, under the assumption of our dimension gap

Received October 9, 1985.