Advanced Studies in Pure Mathematics 8, 1986 Complex Analytic Singularities pp. 349-361

Splicing Algebraic Links

Walter D. Neumann¹

§ 1. Introduction

In this paper we give an introduction to the terminology of splicing (see "Three-dimensional link theory and invariants of plane curve singularities" by Eisenbud and Neumann, [EN]) and then describe how to compute a normal form representation of the real monodromy and Seifert form for the link of a plane curve singularity from this point of view (it was done via a resolution diagram for the singularity in [N3]). It has been conjectured that this might be a complete invariant for the topology of an isolated complex hypersurface singularity in any dimension; the originator now denies responsibility and will remain unnamed, but the conjecture is still unresolved. Many of the required invariants are computed in [EN] and we just review these computations. The first four sections and Theorem 5.1 are survey and review; the main new result is the computation of the equivariant signatures of the monodromy via splicing in Theorem 5.3. This computation applies also to general graph links.

A link for us is a pair (Σ, K) where Σ is an oriented homology 3sphere and K is a disjoint union of oriented circles in Σ . Let (V, p) be a germ of a normal complex surface at a Z-homology manifold point, that is $H^*(V, V-p; Z) = H^*(C^2, C^2-0; Z)$. Let $f: (V, p) \rightarrow (C, 0)$ be the germ of an analytic map. We may assume (V, p) embedded in some ambient $(C^n, 0)$ and then by intersecting $(V, f^{-1}(0))$ with a sufficiently small sphere about $0 \in C^n$, we obtain the link $(\Sigma, K(f))$ of f. We call such a link an algebraic graph link; if $(V, p) = (C^2, 0)$, it is just the link of a plane curve singularity. We make no reducedness assumption on f; thus each branch of $f^{-1}(0)$, and correspondingly each component of K(f), carries a positive integer multiplicity; in the terminology of [EN], $(\Sigma, K(f))$ is a multilink. A link is the special case of a multilink with all multiplicities equal to 1.

The invariants we are interested in are invariants of the Milnor

Received June 12, 1985.

¹⁾ Research partially supported by the NSF. The hospitality of the M.S.R.I. in Berkeley and the I.A.S. in Princeton during the preparation of this manuscript is gratefully acknowledged.