An Upper Semicontinuity Theorem for some Leading Poles of $|f|^{2s}$

Ben Lichtin

Introduction

In this paper an application is made of certain numerical invariants introduced by Libgober [9], called "quasi-adjoint characters". To each germ of an analytic function f at a singular point p and to any other germ of an analytic function ϕ at p one may define the quasi-adjoint character $\kappa_{\phi}(p)$ by studying the family of cyclic covers over f and the adjointness properties to these cyclic covers of canonical differentials with ϕ as a coefficient (for precise definitions see (2. 4)). Each $\kappa_{\phi}(p)$ value is in [0, 1).

The main result of this paper is the

Theorem (3.1). Let $\{f_t\}$ be any 1-parameter family of germs of analytic functions at the common singular point $\overline{0} \in \mathbb{C}^n$. Let ϕ be a germ of an analytic function at $\overline{0}$. Let $\kappa_{\phi}(t)$ be the quasi-adjoint character associated to f_t and ϕ at $\overline{0}$. Then, if $\kappa_{\phi}(0) \in (0, 1)$, one has

$$\kappa_{\phi}(t) \leq \kappa_{\phi}(0)$$

for all t sufficiently close to 0.

This is of particular interest because of the following. For each t, let $U_t \subset U_t'$ be two Milnor balls for a representative of f_t (denoted by f_t). Let ρ be a C^{∞} function which is 1 on U_t and 0 off U_t' . Define the generalized functions on $C^{\infty}(U_t', C)$ $I_t(s, \psi) = \int_{U_t'} |f_t|^{2s} |\psi|^2 \rho dx d\bar{x}$. This is often denoted by $|f_t|^{2s}$ for short. Let $\beta_{\phi}(t)$ be the largest pole of $I_t(s, \phi)$. Then there is a simple relation between $\kappa_{\phi}(t)$ and $\beta_{\phi}(t)$ given by $\kappa_{\phi}(t) + 1 = \beta_{\phi}(t)$ if $\kappa_{\phi}(t) \in (0, 1)$. Thus, (3.1) implies as a corollary

Corollary (3.8). If $\kappa_{\phi}(0) \in (0, 1)$ then $\beta_{\phi}(t) \leq \beta_{\phi}(0)$ for t near 0.

To understand this condition it is helpful to remark that if ϕ is a local unit at $\overline{0}$, then $\kappa_{\phi} = 0$ iff $\overline{0}$ is a rational singular point of f. More generally, $\kappa_{\phi} = 0$ iff ϕ is adjoint to f at $\overline{0}$.

Received November 29, 1984. Revised February 6, 1986.