Strong Simultaneous Resolution for Surface Singularities

Henry B. Laufer*

Let $\lambda \colon \mathscr{V} \to T$ be (the germ of) a (flat) deformation of the two-dimensional isolated hypersurface singularity (V, p). We take T to be reduced. In [9], Teissier introduced, for all dimensions, various notions of simultaneous resolution for λ . Namely, let V_t denote $\lambda^{-1}(t)$, the fiber above t in T.

Definition 1. The map germ $\Pi: \mathcal{M} \rightarrow \mathcal{V}$ is very weak simultaneous resolution of λ if for all sufficiently small representatives of λ , the germ Π has a representative, also denoted Π , such that

- (0) Π is a proper modification map.
- (i) $\lambda \circ \Pi : \mathcal{M} \rightarrow T$ is a flat map.
- (ii) $\Pi_t: M_t \rightarrow V_t$ is a resolution of V_t for all t.

Take V to have dimension two.

Let \mathcal{A} denote the exceptional set in \mathcal{M} .

(W) Π is a *weak* simultaneous resolution if additionally the map induced by restriction $\widetilde{\lambda \circ \Pi} : \mathscr{A} \to T$ is simple, i.e. a locally trivial deformation.

Let $\mathscr S$ denote the singular locus of $\mathscr V$. Consider $\Pi^{-1}(\mathscr S)$ as a non-reduced analytic space (with $\mathscr A$ as its underlying reduced space).

- (S) Π is a strong simultaneous resolution if in addition to (0), (i) and
 - (ii), the map induced by restriction $\lambda \circ \Pi : \Pi^{-1}(\mathcal{S}) \to T$ is simple.
- (F) Π is a *flat* simultaneous resolution if in addition to (0), (i), and
 - (ii), the map induced by restriction $\widetilde{\lambda \circ \Pi} : \Pi^{-1}(\mathscr{S}) \to T$ is flat.

In [4] (see also [7]), very weak simultaneous resolution (after base change) and weak simultaneous resolution were each shown to be equivalent to the constancy as a function of t of suitable numerical invariants of the fibers. In this paper, it is shown, Theorem 1, that $\mu^*(V_t)$ constant implies strong simultaneous resolution for λ . It is known, [9], in all dimensions, that strong simultaneous resolution implies the Whitney conditions and, [8] [2], that the Whitney conditions are equivalent to $\mu^*(V_t)$ constant. So we complete an affirmative answer in dimension two to

Received December 21, 1984.

^{*)} Research partially supported by NSF Grant MCS8102621A01