Regular Holonomic *D*-modules and Distributions on Complex Manifolds

Masaki Kashiwara

§ 0. Introduction

Let (X, \mathcal{O}_X) be a complex manifold and \mathcal{D}_X the sheaf of differential operators on X. The de Rham functor $\mathcal{DR}_X = R \mathcal{H}_{om_{\mathcal{D}_X}}(\mathcal{O}_X, *)$ gives an equivalence of the category $\mathbf{RH}(\mathcal{D}_X)$ of regular holonomic \mathcal{D}_X -modules and the category $\mathbf{Perv}(C_X)$ of perverse sheaves of C-vector spaces on X ([K], [M], [B-B-D]).

To a perverse sheaf F on X we can associate its complex conjugate \overline{F} . Then it is easily checked that \overline{F} is also perverse. We shall discuss here how to construct the corresponding functor $c: \mathbf{RH}(\mathscr{D}_X) \to \mathbf{RH}(\mathscr{D}_X)$ given by $\overline{\mathscr{D}\mathscr{R}_X(\mathscr{M})} = \mathscr{D}\mathscr{R}_X(\mathscr{M}^c)$.

The solution to this problem is given as follows. Let \overline{X} be the complex conjugate of X and $\overline{\mathcal{M}}$ the complex conjugate of \mathcal{M} (See § 1). Denoting by $\mathcal{D}b_{X_R}$ the sheaf of distribution on the underlying real manifold X_R of X, \mathcal{M}^c is given by

$$\mathscr{F}or_n^{\mathscr{D}_X}(\Omega_X^n \underset{\mathscr{O}_{\overline{Y}}}{\bigotimes} \mathscr{D}b_{X_{\overline{R}}}, \overline{\mathscr{M}})$$

where $n = \dim X$ and $\Omega_{\overline{X}}^n$ denotes the sheaf of the highest degree differential forms on \overline{X} .

I would like to thank D. Barlet for helpful conversation.

§ 1. The complex conjugate

Let \overline{X} be the complex conjugate of a complex manifold X. Hence $(\overline{X}, \mathcal{O}_{\overline{X}})$ is isomorphic to (X, \mathcal{O}_{X}) as an R-ringed space but the isomorphism $-: \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}$ is C-anti-linear, i.e. $\overline{af} = \overline{af}$ for $a \in C$ and $f \in \mathcal{O}_{X}$.

Let \mathscr{D}_{X} and \mathscr{D}_{X} denote the sheaves of differential operators on X and \overline{X} , respectively. Then they are isomorphic as a sheaf of R-rings. This isomorphism is also denoted by -. Through this isomorphism, we can associate the \mathscr{D}_{X} module $\overline{\mathscr{M}}$ to a \mathscr{D}_{X} -module \mathscr{M} . We call it the complex conjugate of \mathscr{M} . The \mathscr{D}_{X} -module $\overline{\mathscr{M}}$ is isomorphic to \mathscr{M} as a