Advanced Studies in Pure Mathematics 7, 1985 Automorphic Forms and Number Theory pp. 103-111

Moonshine for $PSL_2(F_7)$

Masao Koike

0. In [1], Conway and Norton assigned a Thompson series of the form

$$q^{-1} + \sum_{n=1}^{\infty} H_n(m) q^n, \quad q = e^{2\pi i z}$$

to each element *m* of the Fischer-Griess group F_1 where H_n are characters of F_1 , and they conjectured among others that Thompson series are generators of the modular function fields of genus zero for some modular groups which contain $\Gamma_0(N)$ for some N. In [6], Queen studied moonshine for other simple groups, for example, Thompson's group F_3 .

In this paper, we consider these phenomena for $PSL_2(F_7)$ and its relation to Conway-Norton's monstrous moonshine.

Let $G = PSL_2(F_7)$. G acts on $F_7 \cup \{\infty\}$ as linear fractional transformations, so G can be considered as the subgroup of S_8 . Then, each element of G is written by products of cycles and these are of the following forms:

$$1^8$$
, $1 \cdot 7$, $1^2 \cdot 3^2$, 2^4 , 4^2 .

For each product of cycles of length n_i , $m = (n_1)(n_2) \cdots (n_s)$, $n_1 \ge \cdots \ge n_s \ge 1$ $\sum_{i=1}^s n_i = 8$, in G, we associate following modular forms:

$$\eta_{1,m}(z) = \prod_{i=1}^{s} \eta(3n_{i}z),$$

$$\eta_{2,m}(z) = \prod_{i=1}^{s} \eta(n_{i}z)^{3},$$

where $\eta(z)$ is the Dedekind η -function. Then $\eta_{1,m}(z)$ (resp. $\eta_{2,m}(z)$) is a cusp form of weight s/2 (resp. 3s/2) on $\Gamma_0(9n_1n_s)$ (resp. $\Gamma_0(n_1n_s)$) with some character and is known to be a common eigenfunction of all Hecke operators (cf. [4]).

We shall prove

Received December 19, 1983.