Advanced Studies in Pure Mathematics 7, 1985 Automorphic Forms and Number Theory pp. 1-6

On the Stark-Shintani Conjecture and Certain Relative Class Numbers

Tsuneo Arakawa

§1. Introduction

1.1. In [4], [5], H. M. Stark introduced certain ray class invariants of real quadratic fields with the use of special values at s=0 of the derivatives of some zeta functions, and presented a remarkable conjecture on the arithmetic of the ray class invariants (his treatment covers the cases of totally real fields). T. Shintani established the conjecture independently and solved it in a special but non-trivial significant case (see [3]). The solved case of the conjecture owing to Shintani might be of some importance in connection with certain Z_p -extensions of ray class fields over real quadratic fields (see J. Nakagawa [1], [2]). In this note we obtain a certain relative class number formula of the ray class fields under the assumption that the Stark-Shintani conjecture is valid. Such a class number formula will have some application in the study of Z_p -extensions of the ray class fields (cf. [1], [2]).

1.2. We summarize our results. Let F be a real quadratic field embedded in the real number field \mathbf{R} . Let E(F) (resp. $E^+(F)$) be the group of units (resp. totally positive units) of F. For each $\alpha \in F$, α' denotes the conjugate of α in F. For an integral ideal \mathfrak{f} of F, let $H_F(\mathfrak{f})$ denote the group of narrow ray classes modulo \mathfrak{f} of F. Take a totally positive integer ν of F such that $\nu + 1 \in \mathfrak{f}$, and denote by $\nu(\mathfrak{f})$ the ray class of $H_F(\mathfrak{f})$ represented by the principal ideal (ν) . For each class $c \in H_F(\mathfrak{f})$, let $\zeta_F(s, c)$ be the partial zeta function defined by $\zeta_F(s, c) = \sum N(\mathfrak{a})^{-s}$, where α is taken over all integral ideals of F belonging to the class c. It is known that $\zeta_F(s, c)$ is holomorphic in the whole complex plane except for a simple pole at s=1. Let $\zeta'_F(s, c)$ denote the derivative of $\zeta_F(s, c)$. Set, for each $c \in H_F(\mathfrak{f})$,

$$X_{f}(c) = \exp(\zeta'_{F}(0, c) - \zeta'_{F}(0, c\nu(f))).$$

The invariant $X_{f}(c)$ is intensively studied by Stark [4] and Shintani [3].

Received March 1, 1984.