Advanced Studies in Pure Mathematics 3, 1984 Geometry of Geodesics and Related Topics pp. 213-230

On the Manifolds of Periodic Geodesics

Hajime Sato

Let S^n be the *n*-dimensional sphere with a Riemannian metric *g*. If all geodesics are periodic with the same period *l*, we say that the Riemannian manifold (S^n, g) is a C_i -manifold, or *g* is a C_i -metric on S^n . (For detail see Besse [2]). Let g_0 be the canonical metric of S^n . Then (S^n, g_0) is a $C_{2\pi}$ -manifold. There are some examples of C_i -metric on S^n (Zoll [10], Weinstein [2], Guillemin [5]) other than the canonical metric. These examples are all obtained from deformations of g_0 in the space of C_i -metrics.

Let $T_1(S^n, g) = T_1(S^n)$ denote the tangent sphere bundle of radius 1 of a C_l -manifold (S^n, g) . Then the geodesic flow induces a free S^1 -action on T_1S^n . Since the geodesic flow vector field is a contact vector field on T_1S^n , the quotient space T_1S^n/S^1 is a (2n-2)-dimensional symplectic manifold. We call T_1S^n/S^1 the manifold of geodesics and denote by Geod (S^n, g) . The manifold Geod (S_n, g_0) is symplectically diffeomorphic to the Kähler manifold Q^{n-1} , called hyperquadric and defined by the equation

$$Z_0^2 + Z_1^2 + \cdots + Z_n^2 = 0$$

in CP^n . Since every known example of C_i -manifold (S^n, g) is a deformation of (S^n, g_0) , the manifold of geodesics Geod (S^n, g) for such manifold is symplectically diffeomorphic to Q^{n-1} .

A result of Weinstein [7] says that, if Geod (S^n, g_1) and Geod (S^n, g_2) are symplectically diffeomorphic, then the eigenvalues of the Laplacian on two C_l -manifolds (S^n, g_1) and (S^n, g_2) are asymptotically similar.

Our problem is as follows. For any C_i -metric g on S^n , is Geod (S^n, g) diffeomorphic to Q^{n-1} ? In this paper we study the tangent bundle of Geod (S^n, g) and its characteristic classes.

Since $Sp(n-1, \mathbf{R})$ is homotopy equivalent to U(n-1), the symplectic manifold Geod (S^n, g) has the unique almost complex structure up to homotopy.

Let γ denote the complex line bundle associated to the S¹-principal

Received January 8, 1983. Revised May 18, 1983.