Advanced Studies in Pure Mathematics 3, 1984 Geometry of Geodesics and Related Topics pp. 97-104

Integrability of Infinitesimal Zoll Deformations

Chiaki Tsukamoto

1. A Riemannian metric on a sphere S^n $(n \ge 2)$ is called a Zoll metric when all the geodesics are closed and have a common length 2π . The metric of constant sectional curvature 1 is a well-known example of a Zoll metric, but we further know that this standard metric g_0 is deformable by Zoll metrics (Zoll [8], Guillemin [3]; see also Besse [1]).

A symmetric 2-form h on S^n which is a direction of a Zoll deformation of g_0 satisfies

(1.1)
$$\int_{0}^{2\pi} h(\dot{\gamma}_{0}(s), \dot{\gamma}_{0}(s)) ds = 0$$

for every geodesic γ_0 of g_0 parametrized by its arclength s, where $\dot{\gamma}_0$ is the tangent vector of γ_0 . Conversely, if h is a symmetric 2-form satisfying (1.1) for every geodesic of g_0 , then the geodesics of $g_t = g_0 + t \cdot h$ are nearly 2π -periodic in the first order of t. We call such a symmetric 2-form on S^n an *infinitesimal Zoll deformation*, which we abbreviate as *IZD*. We say an *IZD* h is *integrable* if there exists a family of Zoll metrics g_t with g_0 being the standard one such that $h = \partial g_t / \partial t |_{t=0}$.

V. Guillemin proved in [3] that every IZD on a 2-dimensional sphere is integrable. On the other hand, K. Kiyohara ([4], [5]) showed that the situation is quite different in higher dimensions; not all the IZD are integrable, and, moreover, the set of integrable IZD does not even form a linear subspace.

They both studied the IZD of conformal type. Up to trivial IZD, they are the only possible IZD on S^2 (Funk [2]). But there exists another type of IZD in higher dimensions, as we have seen in [7]. In this paper, we shall exhibit that this type of IZD are not integrable, using a representation theoretical counterpart of Kiyohara's argument. The problem to determine which IZD is integrable is not yet resolved for the mixture of these two types of IZD, though we get some information by our argument.

2. We first recall how the condition (1.1) is deduced. Let g_t be a family of metrics on S^n with g_0 being the standard metric. We fix a point

Received January 4, 1983.