Advanced Studies in Pure Mathematics 3, 1984 Geometry of Geodesics and Related Topics pp. 93-95

On Deformations of the C_l -Metrics on Spheres

Kazuyoshi Kiyohara

1. This note is a summary of our recent result concerning the existence problem of deformations of the standard metric by $C_{2\pi}$ -metrics on the *n*-dimensional sphere S^n . By definition a riemannian metric g on a manifold M is called a C_t -metric if all of its geodesics are closed and have the common length l. Let $\{g_t\}$ be a one-parameter family of $C_{2\pi}$ metrics on S^n with g_0 being the standard one, and put

$$\frac{d}{dt}g_t|_{t=0} = h$$

We call such a symmetric 2-form h an infinitesimal deformation. It is known that each infinitesimal deformation h satisfies the so-called zeroenergy condition, i.e.,

 $\int_0^{2\pi} h(\dot{\gamma}(s),\,\dot{\gamma}(s))ds = 0$

for any geodesic $\mathcal{T}(s)$ of (S^n, g_0) parametrized by arc-length (cf. [1] p. 151). In [3] we gave another necessary condition, the second order condition, for a symmetric 2-form to be an infinitesimal deformation, and showed that there are symmetric 2-forms which satisfy the zero-energy condition, but not satisfy the second order condition in the case of S^n $(n \ge 3)$. The present theorem is an extension of the result in [3]. We first review the second order condition, and then state the theorem.

2. Let K_2 be the vector space of symmetric 2-forms on S^n which satisfy the zero-energy condition. Let # be the bundle isomorphism from the cotangent bundle T^*S^n to the tangent bundle TS^n obtained by the riemannian metric g_0 . Define the function \hat{h} on T^*S^n for a symmetric 2-form h by

$$\hat{h}(\lambda) = h(\sharp(\lambda), \sharp(\lambda)), \lambda \in T^*S^n.$$

Let S^*S^n be the unit cotangent bundle with respect to the metric g_0 . We

Received December 28, 1982.