Advanced Studies in Pure Mathematics 3, 1984 Geometry of Geodesics and Related Topics pp. 47-85

Geodesic Flows and Geodesic Random Walks

Toshikazu Sunada

Contents

- 0. Introduction
- I. Geodesic Flows
 - 1. Hamilton formalism and invariant measure
 - 2. First integrals
 - 3. Geodesic flows with many first integrals
 - 4. Geodesic flows with few first integrals
- II. Periodic Orbits
 - 1. Class field theory for periodic orbits
 - 2. Zeta functions and entropy
- III. Geodesic Chains
 - 1. Invariant measure
 - 2. Ergodicity of the shifts
 - 3. Wiener flows and stochastic developments

Appendix 1. Small eigen-values of the Laplacian and zeros of Selberg's zeta functions

Appendix 2. Iterations of certain integral operators

§ 0. Introduction

A flow on a set X is a family of bijections $\varphi_t: X \to X$, $t \in \mathbf{R}$, which obeys group property $\varphi_{t+s} = \varphi_t \circ \varphi_s$. Such an object (X, φ_t) arises in many contexts of mathematics. A typical example is the shift operation on a mapping space Map (\mathbf{R}, M) defined by $(\varphi_t c)(s) = c(t+s)$. Although it may seem that this flow has no interesting feature at first sight, various examples of flows in differential geometry appear in fact as subshifts of $(Map (\mathbf{R}, M), \varphi_t)$. For instance, let M be a connected complete Riemannian manifold, and let X be the set of all geodesics $c: \mathbf{R} \to M$. Then the

Received January 4, 1983.

Revised February 25, 1983.