Advanced Studies in Pure Mathematics 2, 1983 Galois Groups and their Representations pp. 89–97

On Unramified Extensions of Function Fields over Finite Fields

Yasutaka Ihara

Let k be an algebraic function field of one variable with genus g over a finite constant field F_q , and S be a given *non-empty* set of prime divisors of k. Denote by k_s^{ur} the maximum unramified Galois extension of k in which all prime divisors of k belonging to S decompose completely. Since S is nonempty, the algebraic closure of F_q in k_s^{ur} must be finite over F_q . In this report, we shall give a survey of our results on this type of extensions k_s^{ur} .

§ 1.*) First, one expects that if k_s^{ur}/k is an *infinite* extension, then S cannot be "too big". What is the natural quantitative result along this line? The Chebotarev density of S is of course 0, but we need a stronger result. By studying the behaviour of zeta functions of intermediate fields of k_s^{ur}/k near $s=\frac{1}{2}$, using the Weil's Riemann hypothesis for curves, we obtained the following

Theorem 1. Suppose that M is an infinite unramified Galois extension of k. For each prime divisor P of k, let deg P denote its degree over F_q , put $N(P) = q^{\deg P}$, and let $f(P) (1 \le f(P) \le \infty)$ denote the residue extension degree of P in M/k. Let $g \ge 1$. Then

(1.1)
$$\sum_{\substack{P \\ f(P) \leq \infty}} \frac{\deg P}{N(P)^{\frac{1}{2}f(P)} - 1} \leq g - 1,$$

the series on the left being convergent.

Corollary 1. If k_s^{ur}/k is infinite, then

(1.2)
$$\sum_{P \in S} \frac{\deg P}{N(P)^{1/2} - 1} \leq g - 1.$$

In particular,

Received January 6, 1983.

*) The results of §1 are obtained after the Symposium. Details will appear in [Ih 7].