On the Absolute Galois Groups of Local Fields II

Keiichi Komatsu

Introduction

Let p be an odd prime number, \boldsymbol{Q}_{p} the p-adic number field, k a finite algebraic extension of \boldsymbol{Q}_{p} and \bar{k} the algebraic closure of k. In [3], A. V. Jakovlev describes the absolute Galois group $G(\bar{k} / k)$ of k of even degree by using generators and relations (cf. [2]). However, this description is very complicated and not explicit. In [7], H. Koch says that a simple description of $G(\bar{k} / k)$ in terms of generators and relations seems impossible. Recently, in [5], Jannsen and Wingberg give a simple description of the absolute Galois group of k of any degree by using generators and relations. The purpose of this part is to give an account of the result of Jannsen and Wingberg [5]. This part is the sequel of Miki [8]. Readers are advised to recall the definition of Demuškin formation in [8].

Notation and terminology

Throughout this paper, \boldsymbol{Z} and \hat{Z} denote the rational integer ring and the inverse limit of all finite cyclic groups, respectively. For a prime number p, we denote by \boldsymbol{Z}_{p} the p-adic integer ring and by \boldsymbol{Q}_{p} the p-adic number field. $\quad F_{p}$ denotes the prime field $\boldsymbol{Z} / p \boldsymbol{Z}$. For a profinite group G, we denote by \widetilde{G} the maximal pro-p-factor group of G. For elements $x, y \in G$, we put $[x, y]=x y x^{-1} y^{-1}$ and $x^{y}=y x y^{-1}$. For closed subgroups H and S of G, we denote by [H, S] the closed subgroup of G generated by $\{[x, y] \mid x \in H, y \in S\}$. We denote by $G^{a b}$ the factor group $G /[G, G]$. If G is commutative, we denote by G^{*} the dual group of G, by $\operatorname{Tor}(G)$ the torsion part of G and by $G(p)$ the p-part of G. Let A and B be G modules. We denote by $A \oplus B$ the direct sum of A and B. We denote by $H^{n}(G, A)$ the n-th cohomology group of G with coefficients in A. Let s be a natural number and $\left(\boldsymbol{Z} / p^{s} Z\right)^{\times}$the multiplicative group of the factor ring $\boldsymbol{Z} / p^{s} \boldsymbol{Z}$. Let α be a continuous homomorphism of G into $\left(\boldsymbol{Z} / p^{s} \boldsymbol{Z}\right)^{\times}$. For elements $x+p^{s} \boldsymbol{Z} \in \boldsymbol{Z} / p^{s} \boldsymbol{Z}$ and $\sigma \in G$, we define $\left(x+p^{s} \boldsymbol{Z}\right)^{\sigma}=\alpha(\sigma)\left(x+p^{s} \boldsymbol{Z}\right)$. By this definition, we can regard $\boldsymbol{Z} / p^{s} \boldsymbol{Z}$ as G-module. We denote by $\boldsymbol{Z} / p^{s} \boldsymbol{Z}(\alpha)$ this G-module. From now on, p denotes an odd prime number.

