Advanced Studies in Pure Mathematics 2, 1983 Galois Groups and their Representations pp. 63-68

On the Absolute Galois Groups of Local Fields II

Keiichi Komatsu

Introduction

Let p be an odd prime number, Q_p the p-adic number field, k a finite algebraic extension of Q_p and \bar{k} the algebraic closure of k. In [3], A. V. Jakovlev describes the absolute Galois group $G(\bar{k}/k)$ of k of even degree by using generators and relations (cf. [2]). However, this description is very complicated and not explicit. In [7], H. Koch says that a simple description of $G(\bar{k}/k)$ in terms of generators and relations seems impossible. Recently, in [5], Jannsen and Wingberg give a simple description of the absolute Galois group of k of any degree by using generators and relations. The purpose of this part is to give an account of the result of Jannsen and Wingberg [5]. This part is the sequel of Miki [8]. Readers are advised to recall the definition of Demuškin formation in [8].

Notation and terminology

Throughout this paper, Z and \hat{Z} denote the rational integer ring and the inverse limit of all finite cyclic groups, respectively. For a prime number p, we denote by Z_p the p-adic integer ring and by Q_p the p-adic number field. F_p denotes the prime field Z/pZ. For a profinite group G, we denote by \tilde{G} the maximal pro-p-factor group of G. For elements x, $y \in G$, we put $[x, y] = xyx^{-1}y^{-1}$ and $x^y = yxy^{-1}$. For closed subgroups H and S of G, we denote by [H, S] the closed subgroup of G generated by $\{[x, y] | x \in H, y \in S\}$. We denote by G^{ab} the factor group G/[G, G]. If G is commutative, we denote by G^* the dual group of G, by Tor (G) the torsion part of G and by G(p) the p-part of G. Let A and B be Gmodules. We denote by $A \oplus B$ the direct sum of A and B. We denote by $H^n(G, A)$ the *n*-th cohomology group of G with coefficients in A. Let s be a natural number and $(\mathbb{Z}/p^s\mathbb{Z})^{\times}$ the multiplicative group of the factor ring $Z/p^s Z$. Let α be a continuous homomorphism of G into $(Z/p^s Z)^{\times}$. For elements $x + p^s Z \in Z/p^s Z$ and $\sigma \in G$, we define $(x + p^s Z)^\sigma = \alpha(\sigma)(x + p^s Z)$. By this definition, we can regard $Z/p^s Z$ as G-module. We denote by $Z/p^s Z(\alpha)$ this G-module. From now on, p denotes an odd prime number.

Received November 30, 1982.