Advanced Studies in Pure Mathematics 2, 1983 Galois Groups and their Representations pp. 55-61

On the Absolute Galois Groups of Local Fields I

Hiroo Miki

§1. Introduction

Let p be an odd prime number and let Q_p be the field of p-adic numbers. Let k be a finite algebraic extension of Q_p and let G_k denote the absolute Galois group of k, i.e., the Galois group $G(\bar{k}/k)$ of the algebraic closure \bar{k} of k. Jakovlev [7] [8] describes G_k in terms of generators and relations when $n = [k: Q_p]$ is even. Recently, Jannsen and Wingberg [10] succeeded in giving a simpler description of G_k in terms of generators and relations for any k, by using Demuškin formation (a group theoretical characterization of G_k) due to Koch [13]. The purpose of the present paper is to give a historical exposition of a way to the concept of Demuškin formation, as the preliminaries of Komatsu [14]. We shall emphasize a number theoretical process and omit the proofs of the purely group theoretical parts.

§ 2. Šafarevič's theorem (the case where $\zeta_1 \in k$)

Put $n = [k: Q_p]$. Let k(p) be the maximal *p*-extension of *k* and put $G_k(p) = G(k(p)/k)$. Let ζ_i be a primitive p^i -th root of unity for $i \ge 1$. Let L(i) be a free group of rank *i* and let F(i) be a free pro-*p*-group of rank *i*, i.e., $F(i) = \lim_{k \to \infty} L(i)/N$, where the projective limit is taken over all normal subgroups N of L(i) such that L(i)/N are finite *p*-groups.

The following lemma is well known.

Lemma 1 (Schreier). Any subgroup of L(i) of index j is a free group of rank j(i-1)+1.

By using Lemma 1 and local class field theory, Šafarevič [18] proves the following

Theorem 1. Let the notation and assumptions be as above. Moreover, assume that $\zeta_1 \in k$. Then $G_k(p)$ is a free pro-p-group of rank (n+1).

Proof. Put $G = G_0 = G_k(p)$ and $G_{i+1} = [G_i, G_i]G_i^p$ for $i \ge 0$, where Received November 30, 1982.