CHAPTER 6

Random pairs

This chapter is devoted to an introduction to the study of probability law s of random pairs (X, Y), i.e. two-dimensional random vectors, their usual parameters and related concepts. Its follows the lines of Chapters 4 and 5 which focused on real-valued random variables. As in the aforementioned chapter, here again, we focus on discrete random pairs.

A discrete random pair (X, Y) takes its values in a set of the form

$$
\mathcal{S} \mathcal{V}_{(X, Y)}=\left\{\left(a_{i}, b_{j}\right),(i, j) \in K\right\}
$$

where K is an enumerable set with

$$
\begin{equation*}
\forall(i, j) \in K, \mathbb{P}\left((X, Y)=\left(a_{i}, b_{j}\right)\right)>0 \tag{0.1}
\end{equation*}
$$

We say that $\mathcal{S} \mathcal{V}_{(X, Y)}$ is a strict support or a domain or a values set of the random pair (X, Y), if and only if, all its elements are taken by (X, Y) with non-zero probabilities, as in (0.1).

We want the reader to remark for once that adding supplementary points (x, y) which are not taken by (X, Y) [meaning that $\mathbb{P}((X, Y)=(x, y))=0$] to $\mathcal{S} \mathcal{V}_{(X, Y)}$, does not change anything regarding computations using the probability law of (X, Y). If we have such points in a values set, we call this latter an extended values set.

We consider the first projections of the pair values defined as follows:

$$
\left(a_{i}, b_{j}\right) \hookrightarrow a_{i} .
$$

By forming a set of these projections, we obtain a set

$$
\mathcal{V}_{X}=\left\{x_{h}, h \in I\right\} .
$$

