CHAPTER 5

Real-valued Random Variable Parameters

Before we begin, we strongly stress that the mathematical expectation is defined only for a real-valued random variable. If a random variable is not a real-valued one, we may have mathematical expectations of real-valued functions of it.

Let us introduce the notion of mathematical expectation in an every day life example.

Example 1. Consider a class of 24 students. Suppose that 5 of them have the age of 19,7 the age of 20,10 the age of 23 , and 2 the age of 17 . Let us denote by m the average age of the class, that is :

$$
m=\frac{5 \times 19+7 \times 20+10 \times 23+2 \times 17}{24}=20.79 .
$$

Let X be the random variable taking the distinct ages as values, that is $\mathcal{V}(X)=\left\{x_{1}, \ldots, x_{4}\right\}$ with $x_{1}=19, x_{2}=20, x_{3}=23, x_{4}=17$, with probability law :

$$
\mathbb{P}\left(X=x_{1}\right)=\frac{5}{24}, \mathbb{P}\left(X=x_{2}\right)=\frac{7}{24}, \mathbb{P}\left(X=x_{3}\right)=\frac{10}{24}, \mathbb{P}\left(X=x_{4}\right)=\frac{2}{24}
$$

We may summarize this probability law in the following table :

k	19	20	23	17
$P(x=k)$	$\frac{5}{24}$	$\frac{7}{24}$	$\frac{10}{24}$	$\frac{2}{24}$

Set Ω as the class of these 24 students. The following graph

$$
\begin{array}{rlll}
X: & \Omega & \rightarrow & \mathbb{R} \\
& \omega & \hookrightarrow X(\omega)=\text { age of the student } \omega .
\end{array}
$$

