CHAPTER 4

Random Variables

We begin with definitions, examples and notations.

Definition 1. Let $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$ be a probability space. A random variable on $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$ is an application *X* from Ω to \mathbb{R}^k .

If k = 1, we say that X is a **real-valued random variable**, abbreviated in *(rrv)*.

If k = 2, X is a random couple or a bi-dimensional random variable.

If the general case, X is a random variable of k dimensions, or a k-dimensional random variable, or simply a random vector.

If X takes a finite number of distinct values (points) in \mathbb{R}^k , X is said to be a **random variable with finite number of values**.

If *X* takes its values in a set \mathcal{V}_X that can be written in an enumerable form :

$$\mathcal{V}_X = \{x_1, x_2, x_3, \dots\},\$$

the random variable is said to be a **discrete random variable**. So, any random variable with finite number of values is a discrete random variable.

Examples 1. Let us toss twice a die whose faces are numbered from 1 to 6. Let X be the addition of the two occuring numbers. Then X is a real-valued random defined on

$$\Omega = \{1, 2, \dots, 6\}^2$$