Conditional Probability and Independence

Suppose that we are tossing a die three times and considering the outcomes in the order of occurring. The set of all individual events Ω is the set of triplets (i, j, k), where i, j and k are, respectively the face that comes out in the first, in the second and in the third tossing, that is

$$
\Omega=\{1,2, \ldots, 6\}^{3}=\{(i, j, k), 1 \leq i, \mathrm{\jmath}, k \leq 6\}
$$

Denote by A the event : the sum of the three numbers i, j and k is six (6) and by B the event : the number 1 appears in the first tossing. We have

$$
\begin{aligned}
A & =\left\{(i, j, k) \in\{1,2, \ldots, 6\}^{3}, i+j+k=6\right\} \\
& =\{(1,1,4),(1,2,3),(1,3,2),(1,4,1),(2,1,3),(2,2,2),(2,3,1),(3,1,2),(3,2,1),(4,1,4)\}
\end{aligned}
$$

and

$$
\begin{aligned}
B & =\left\{(i, j, k) \in\{1,2, \ldots, 6\}^{3}, i=1\right\} \\
& =\{1\} \times\{1,2, \ldots, 6\} \times\{1,2, \ldots, 6\}
\end{aligned}
$$

Remark that $\operatorname{Card}(A)=10$ and $\operatorname{Card}(B)=1 \times 6 \times 6=36$.
Suppose that we have two observers named Observer 1 and Observer 2.
Observer 1 tosses the die three times and gets the outcome. Suppose the event A occurred. Observer 1 knows that A is realized.

Observer 2, who is somewhat far from Observer 1, does not know. But Observer 1 let him know that the event A occurred.

