Chapter 7. Representation Theory of the Symmetric Group

We have already built three irreducible representations of the symmetric group: the trivial, alternating and $n-1$ dimensional representations in Chapter 2. In this chapter we build the remaining representations and develop some of their properties.

To motivate the general construction, consider the space X of the unordered pairs $\{i, j\}$ of cardinality $\binom{n}{2}$. The symmetric group acts on these pairs by $\pi\{i, j\}=\{\pi(i), \pi(j)\}$. The permutation representation generated by this action can be described as an $\binom{n}{2}$ dimensional vector space spanned by basis vectors $e_{\{i, j\}}$. This space splits into three irreducibles: A one-dimensional trivial representation is spanned by $\bar{v}=\Sigma e_{\{i, j\}}$. An $n-1$ dimensional space is spanned by $v_{i}=\Sigma_{j} e_{\{i, j\}}-c \bar{v}, 1 \leq i \leq n$, with c chosen so v_{i} is orthogonal to \bar{v}. The complement of these two spaces is also an irreducible representation. A direct argument for these assertions is given at the end of Section A. The arguments generalize. The following treatment follows the first few sections of James (1978) quite closely. Chapter 7 in James and Kerber (1981) is another presentation.

A. Construction of the irreducible representations of THE SYMMETRIC GROUP.

There are various definitions relating to diagrams, tableaux, and tabloids. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ be a partition of n. Thus, $\lambda_{1} \geq \lambda_{2} \ldots \geq \lambda_{r}$ and $\lambda_{1}+\ldots+\lambda_{r}=n$. The diagram of λ is an ordered set of boxes with λ_{i} boxes in row i. If $\lambda=$ $(3,3,2,1)$, the diagram is

If λ and μ are partitions of n we say λ dominates μ, and write $\lambda \unrhd \mu$, provided that $\lambda_{1} \geq \mu_{1}, \lambda_{1}+\lambda_{2} \geq \mu_{1}+\mu_{2}, \ldots$, etc. This partial order is widely used in various areas of mathematics. It is sometimes called the order of majorization. There is a book length treatment of this order by Marshall and Olkin (1979). They show that $\lambda \unrhd \mu$ if and only if we can move from the diagram of λ to the diagram of μ by moving blocks from the right hand edge upward, one at a time, such that at each stage the resulting configuration is the diagram of a partition. Thus, $(4,2) \triangleright(3,3)$, but (3,3), and (4, 1, 1) are not comparable. See Hazewinkel and Martin (1983) for many novel applications of the order.

