Lecture Vil, COUNTING LATIN RECTANGLES

The problem of determining an asymptotic expression for the number $N_{k, n}$ of $\mathrm{k} \times \mathrm{n}$ Latin rectangles as n approaches infinity was first solved by Erdös and Kaplansky (1946) for the case

$$
\begin{equation*}
k=o\left((\log n)^{\frac{3}{2}}\right) \tag{1}
\end{equation*}
$$

They proved that, subject to (1),

$$
\begin{equation*}
p_{k, n}=\frac{N_{k, n}}{(n!)^{k}} \sim e^{-\frac{k(k-1)}{2}} . \tag{2}
\end{equation*}
$$

This result was extended to

$$
\begin{equation*}
k=o\left(n^{1 / 3}\right) \tag{3}
\end{equation*}
$$

by Yamamoto (1951). The case $k=2$ is the familiar "problème des rencontres," where the exact solution,

$$
\begin{equation*}
p_{2, n}=\sum_{j=0}^{n} \frac{(-1)^{j}}{j!} \tag{4}
\end{equation*}
$$

shows that, in this case, the approximation

$$
\begin{equation*}
p_{2, n} \sim e^{-1} \tag{5}
\end{equation*}
$$

given by (2) is extremely good if n is at all large. In this lecture I shall prove Yamamoto's result that, for $k=o\left(n^{\frac{1}{2}}\right)$,

$$
\begin{equation*}
p_{k, n}=e^{-\frac{k(k-1)}{2}+0\left(\frac{k^{3}}{n}\right)} . \tag{6}
\end{equation*}
$$

In a later lecture I shall derive a more accurate approximation than (6). These two lectures are based on my 1978 paper in the Journal of Combinatorial Theory, Series A.

