Lecture IV. THE NuMBER OF ONES IN THE BINARY EXPANSION OF A RANDOM INTEGER

Let n be a natural number and X a random variable uniformly distributed over the set $\{0, \ldots, n-1\}$. We shall see that for large n the number of ones in the binary expansion of X has approximately a binomial distribution, the distribution of the number of successes in k independent trials with probability one-half, where k is determined by

$$
\begin{equation*}
2^{k-1}<n \leq 2^{k} . \tag{1}
\end{equation*}
$$

The expected value of the number of ones in this expansion was studied as a function of n by Delange (1975). In Diaconis (1977) the present problem was studied by the method of the third lecture. Here I shall give a slightly different treatment in order to emphasize the notion of approximation by the binomial distribution rather than the asymptotically equivalent normal distribution. At the end of the lecture I shall also sketch a proof of the same result by an induction argument, not related to the main ideas of this series of lectures.

Let n be a natural number and X a random variable uniformly distributed over the set $\{0, \ldots, n-1\}$. For the binary expansions of $n-1$ and X, I shall write

$$
\begin{equation*}
a=n-1=\sum_{i=1}^{k} a_{i} 2^{k-i}, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
x=\sum_{i=1}^{k} x_{i} 2^{k-i} . \tag{3}
\end{equation*}
$$

